about summary refs log tree commit diff
path: root/sysdeps/ieee754/ldbl-96/s_fmal.c
blob: 73104914b37ab6fc6b373d3ac755a884a3b0b58e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
/* Compute x * y + z as ternary operation.
   Copyright (C) 2010-2012 Free Software Foundation, Inc.
   This file is part of the GNU C Library.
   Contributed by Jakub Jelinek <jakub@redhat.com>, 2010.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <http://www.gnu.org/licenses/>.  */

#include <float.h>
#include <math.h>
#include <fenv.h>
#include <ieee754.h>
#include <math_private.h>

/* This implementation uses rounding to odd to avoid problems with
   double rounding.  See a paper by Boldo and Melquiond:
   http://www.lri.fr/~melquion/doc/08-tc.pdf  */

long double
__fmal (long double x, long double y, long double z)
{
  union ieee854_long_double u, v, w;
  int adjust = 0;
  u.d = x;
  v.d = y;
  w.d = z;
  if (__builtin_expect (u.ieee.exponent + v.ieee.exponent
			>= 0x7fff + IEEE854_LONG_DOUBLE_BIAS
			   - LDBL_MANT_DIG, 0)
      || __builtin_expect (u.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0)
      || __builtin_expect (v.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0)
      || __builtin_expect (w.ieee.exponent >= 0x7fff - LDBL_MANT_DIG, 0)
      || __builtin_expect (u.ieee.exponent + v.ieee.exponent
			   <= IEEE854_LONG_DOUBLE_BIAS + LDBL_MANT_DIG, 0))
    {
      /* If z is Inf, but x and y are finite, the result should be
	 z rather than NaN.  */
      if (w.ieee.exponent == 0x7fff
	  && u.ieee.exponent != 0x7fff
          && v.ieee.exponent != 0x7fff)
	return (z + x) + y;
      /* If z is zero and x are y are nonzero, compute the result
	 as x * y to avoid the wrong sign of a zero result if x * y
	 underflows to 0.  */
      if (z == 0 && x != 0 && y != 0)
	return x * y;
      /* If x or y or z is Inf/NaN, or if fma will certainly overflow,
	 or if x * y is less than half of LDBL_DENORM_MIN,
	 compute as x * y + z.  */
      if (u.ieee.exponent == 0x7fff
	  || v.ieee.exponent == 0x7fff
	  || w.ieee.exponent == 0x7fff
	  || u.ieee.exponent + v.ieee.exponent
	     > 0x7fff + IEEE854_LONG_DOUBLE_BIAS
	  || u.ieee.exponent + v.ieee.exponent
	     < IEEE854_LONG_DOUBLE_BIAS - LDBL_MANT_DIG - 2)
	return x * y + z;
      if (u.ieee.exponent + v.ieee.exponent
	  >= 0x7fff + IEEE854_LONG_DOUBLE_BIAS - LDBL_MANT_DIG)
	{
	  /* Compute 1p-64 times smaller result and multiply
	     at the end.  */
	  if (u.ieee.exponent > v.ieee.exponent)
	    u.ieee.exponent -= LDBL_MANT_DIG;
	  else
	    v.ieee.exponent -= LDBL_MANT_DIG;
	  /* If x + y exponent is very large and z exponent is very small,
	     it doesn't matter if we don't adjust it.  */
	  if (w.ieee.exponent > LDBL_MANT_DIG)
	    w.ieee.exponent -= LDBL_MANT_DIG;
	  adjust = 1;
	}
      else if (w.ieee.exponent >= 0x7fff - LDBL_MANT_DIG)
	{
	  /* Similarly.
	     If z exponent is very large and x and y exponents are
	     very small, it doesn't matter if we don't adjust it.  */
	  if (u.ieee.exponent > v.ieee.exponent)
	    {
	      if (u.ieee.exponent > LDBL_MANT_DIG)
		u.ieee.exponent -= LDBL_MANT_DIG;
	    }
	  else if (v.ieee.exponent > LDBL_MANT_DIG)
	    v.ieee.exponent -= LDBL_MANT_DIG;
	  w.ieee.exponent -= LDBL_MANT_DIG;
	  adjust = 1;
	}
      else if (u.ieee.exponent >= 0x7fff - LDBL_MANT_DIG)
	{
	  u.ieee.exponent -= LDBL_MANT_DIG;
	  if (v.ieee.exponent)
	    v.ieee.exponent += LDBL_MANT_DIG;
	  else
	    v.d *= 0x1p64L;
	}
      else if (v.ieee.exponent >= 0x7fff - LDBL_MANT_DIG)
	{
	  v.ieee.exponent -= LDBL_MANT_DIG;
	  if (u.ieee.exponent)
	    u.ieee.exponent += LDBL_MANT_DIG;
	  else
	    u.d *= 0x1p64L;
	}
      else /* if (u.ieee.exponent + v.ieee.exponent
		  <= IEEE854_LONG_DOUBLE_BIAS + LDBL_MANT_DIG) */
	{
	  if (u.ieee.exponent > v.ieee.exponent)
	    u.ieee.exponent += 2 * LDBL_MANT_DIG;
	  else
	    v.ieee.exponent += 2 * LDBL_MANT_DIG;
	  if (w.ieee.exponent <= 4 * LDBL_MANT_DIG + 4)
	    {
	      if (w.ieee.exponent)
		w.ieee.exponent += 2 * LDBL_MANT_DIG;
	      else
		w.d *= 0x1p128L;
	      adjust = -1;
	    }
	  /* Otherwise x * y should just affect inexact
	     and nothing else.  */
	}
      x = u.d;
      y = v.d;
      z = w.d;
    }

  /* Ensure correct sign of exact 0 + 0.  */
  if (__builtin_expect ((x == 0 || y == 0) && z == 0, 0))
    return x * y + z;

  /* Multiplication m1 + m2 = x * y using Dekker's algorithm.  */
#define C ((1LL << (LDBL_MANT_DIG + 1) / 2) + 1)
  long double x1 = x * C;
  long double y1 = y * C;
  long double m1 = x * y;
  x1 = (x - x1) + x1;
  y1 = (y - y1) + y1;
  long double x2 = x - x1;
  long double y2 = y - y1;
  long double m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2;

  /* Addition a1 + a2 = z + m1 using Knuth's algorithm.  */
  long double a1 = z + m1;
  long double t1 = a1 - z;
  long double t2 = a1 - t1;
  t1 = m1 - t1;
  t2 = z - t2;
  long double a2 = t1 + t2;

  fenv_t env;
  feholdexcept (&env);
  fesetround (FE_TOWARDZERO);
  /* Perform m2 + a2 addition with round to odd.  */
  u.d = a2 + m2;

  if (__builtin_expect (adjust == 0, 1))
    {
      if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7fff)
	u.ieee.mantissa1 |= fetestexcept (FE_INEXACT) != 0;
      feupdateenv (&env);
      /* Result is a1 + u.d.  */
      return a1 + u.d;
    }
  else if (__builtin_expect (adjust > 0, 1))
    {
      if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7fff)
	u.ieee.mantissa1 |= fetestexcept (FE_INEXACT) != 0;
      feupdateenv (&env);
      /* Result is a1 + u.d, scaled up.  */
      return (a1 + u.d) * 0x1p64L;
    }
  else
    {
      if ((u.ieee.mantissa1 & 1) == 0)
	u.ieee.mantissa1 |= fetestexcept (FE_INEXACT) != 0;
      v.d = a1 + u.d;
      /* Ensure the addition is not scheduled after fetestexcept call.  */
      math_force_eval (v.d);
      int j = fetestexcept (FE_INEXACT) != 0;
      feupdateenv (&env);
      /* Ensure the following computations are performed in default rounding
	 mode instead of just reusing the round to zero computation.  */
      asm volatile ("" : "=m" (u) : "m" (u));
      /* If a1 + u.d is exact, the only rounding happens during
	 scaling down.  */
      if (j == 0)
	return v.d * 0x1p-128L;
      /* If result rounded to zero is not subnormal, no double
	 rounding will occur.  */
      if (v.ieee.exponent > 128)
	return (a1 + u.d) * 0x1p-128L;
      /* If v.d * 0x1p-128L with round to zero is a subnormal above
	 or equal to LDBL_MIN / 2, then v.d * 0x1p-128L shifts mantissa
	 down just by 1 bit, which means v.ieee.mantissa1 |= j would
	 change the round bit, not sticky or guard bit.
	 v.d * 0x1p-128L never normalizes by shifting up,
	 so round bit plus sticky bit should be already enough
	 for proper rounding.  */
      if (v.ieee.exponent == 128)
	{
	  /* v.ieee.mantissa1 & 2 is LSB bit of the result before rounding,
	     v.ieee.mantissa1 & 1 is the round bit and j is our sticky
	     bit.  */
	  w.d = 0.0L;
	  w.ieee.mantissa1 = ((v.ieee.mantissa1 & 3) << 1) | j;
	  w.ieee.negative = v.ieee.negative;
	  v.ieee.mantissa1 &= ~3U;
	  v.d *= 0x1p-128L;
	  w.d *= 0x1p-2L;
	  return v.d + w.d;
	}
      v.ieee.mantissa1 |= j;
      return v.d * 0x1p-128L;
    }
}
weak_alias (__fmal, fmal)