summary refs log tree commit diff
path: root/sysdeps/ieee754/ldbl-96/e_asinl.c
blob: e469431b0d1b8f2f25f81cff70e771f23b5d3cc6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

/*
  Long double expansions contributed by
  Stephen L. Moshier <moshier@na-net.ornl.gov>
*/

/* __ieee754_asin(x)
 * Method :
 *	Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
 *	we approximate asin(x) on [0,0.5] by
 *		asin(x) = x + x*x^2*R(x^2)
 *
 *	For x in [0.5,1]
 *		asin(x) = pi/2-2*asin(sqrt((1-x)/2))
 *	Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
 *	then for x>0.98
 *		asin(x) = pi/2 - 2*(s+s*z*R(z))
 *			= pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
 *	For x<=0.98, let pio4_hi = pio2_hi/2, then
 *		f = hi part of s;
 *		c = sqrt(z) - f = (z-f*f)/(s+f) 	...f+c=sqrt(z)
 *	and
 *		asin(x) = pi/2 - 2*(s+s*z*R(z))
 *			= pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
 *			= pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
 *
 * Special cases:
 *	if x is NaN, return x itself;
 *	if |x|>1, return NaN with invalid signal.
 *
 */


#include "math.h"
#include "math_private.h"

#ifdef __STDC__
static const long double
#else
static long double
#endif
  one = 1.0L,
  huge = 1.0e+4932L,
 pio2_hi = 1.5707963267948966192021943710788178805159986950457096099853515625L,
  pio2_lo = 2.9127320560933561582586004641843300502121E-20L,
  pio4_hi = 7.8539816339744830960109718553940894025800E-1L,

	/* coefficient for R(x^2) */

  /* asin(x) = x + x^3 pS(x^2) / qS(x^2)
     0 <= x <= 0.5
     peak relative error 1.9e-21  */
  pS0 =  -1.008714657938491626019651170502036851607E1L,
  pS1 =   2.331460313214179572063441834101394865259E1L,
  pS2 =  -1.863169762159016144159202387315381830227E1L,
  pS3 =   5.930399351579141771077475766877674661747E0L,
  pS4 =  -6.121291917696920296944056882932695185001E-1L,
  pS5 =   3.776934006243367487161248678019350338383E-3L,

  qS0 =  -6.052287947630949712886794360635592886517E1L,
  qS1 =   1.671229145571899593737596543114258558503E2L,
  qS2 =  -1.707840117062586426144397688315411324388E2L,
  qS3 =   7.870295154902110425886636075950077640623E1L,
  qS4 =  -1.568433562487314651121702982333303458814E1L;
    /* 1.000000000000000000000000000000000000000E0 */

#ifdef __STDC__
long double
__ieee754_asinl (long double x)
#else
double
__ieee754_asinl (x)
     long double x;
#endif
{
  long double t, w, p, q, c, r, s;
  int32_t ix;
  u_int32_t se, i0, i1, k;

  GET_LDOUBLE_WORDS (se, i0, i1, x);
  ix = se & 0x7fff;
  ix = (ix << 16) | (i0 >> 16);
  if (ix >= 0x3fff8000)
    {				/* |x|>= 1 */
      if (ix == 0x3fff8000 && ((i0 - 0x80000000) | i1) == 0)
	/* asin(1)=+-pi/2 with inexact */
	return x * pio2_hi + x * pio2_lo;
      return (x - x) / (x - x);	/* asin(|x|>1) is NaN */
    }
  else if (ix < 0x3ffe8000)
    {				/* |x|<0.5 */
      if (ix < 0x3fde8000)
	{			/* if |x| < 2**-33 */
	  if (huge + x > one)
	    return x;		/* return x with inexact if x!=0 */
	}
      else
	{
	  t = x * x;
	  p =
	    t * (pS0 +
		 t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
	  q = qS0 + t * (qS1 + t * (qS2 + t * (qS3 + t * (qS4 + t))));
	  w = p / q;
	  return x + x * w;
	}
    }
  /* 1> |x|>= 0.5 */
  w = one - fabsl (x);
  t = w * 0.5;
  p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
  q = qS0 + t * (qS1 + t * (qS2 + t * (qS3 + t * (qS4 + t))));
  s = __ieee754_sqrtl (t);
  if (ix >= 0x3ffef999)
    {				/* if |x| > 0.975 */
      w = p / q;
      t = pio2_hi - (2.0 * (s + s * w) - pio2_lo);
    }
  else
    {
      GET_LDOUBLE_WORDS (k, i0, i1, s);
      i1 = 0;
      SET_LDOUBLE_WORDS (w,k,i0,i1);
      c = (t - w * w) / (s + w);
      r = p / q;
      p = 2.0 * s * r - (pio2_lo - 2.0 * c);
      q = pio4_hi - 2.0 * w;
      t = pio4_hi - (p - q);
    }
  if ((se & 0x8000) == 0)
    return t;
  else
    return -t;
}