about summary refs log tree commit diff
path: root/sysdeps/ieee754/ldbl-128ibm/s_remquol.c
blob: 154d0ee963487892be3c06fdb4fa21c78849bc9b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
/* Compute remainder and a congruent to the quotient.
   Copyright (C) 1997-2019 Free Software Foundation, Inc.
   This file is part of the GNU C Library.
   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and
		  Jakub Jelinek <jj@ultra.linux.cz>, 1999.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <https://www.gnu.org/licenses/>.  */

#include <math.h>

#include <math_private.h>
#include <math_ldbl_opt.h>


static const long double zero = 0.0;


long double
__remquol (long double x, long double y, int *quo)
{
  int64_t hx,hy;
  uint64_t sx,lx,ly,qs;
  int cquo;
  double xhi, xlo, yhi, ylo;

  ldbl_unpack (x, &xhi, &xlo);
  EXTRACT_WORDS64 (hx, xhi);
  EXTRACT_WORDS64 (lx, xlo);
  ldbl_unpack (y, &yhi, &ylo);
  EXTRACT_WORDS64 (hy, yhi);
  EXTRACT_WORDS64 (ly, ylo);
  sx = hx & 0x8000000000000000ULL;
  qs = sx ^ (hy & 0x8000000000000000ULL);
  ly ^= hy & 0x8000000000000000ULL;
  hy &= 0x7fffffffffffffffLL;
  lx ^= sx;
  hx &= 0x7fffffffffffffffLL;

  /* Purge off exception values.  */
  if (hy == 0)
    return (x * y) / (x * y); 			/* y = 0 */
  if ((hx >= 0x7ff0000000000000LL)		/* x not finite */
      || (hy > 0x7ff0000000000000LL))		/* y is NaN */
    return (x * y) / (x * y);

  if (hy <= 0x7fbfffffffffffffLL)
    x = __ieee754_fmodl (x, 8 * y);              /* now x < 8y */

  if (((hx - hy) | (lx - ly)) == 0)
    {
      *quo = qs ? -1 : 1;
      return zero * x;
    }

  x  = fabsl (x);
  y  = fabsl (y);
  cquo = 0;

  if (hy <= 0x7fcfffffffffffffLL && x >= 4 * y)
    {
      x -= 4 * y;
      cquo += 4;
    }
  if (hy <= 0x7fdfffffffffffffLL && x >= 2 * y)
    {
      x -= 2 * y;
      cquo += 2;
    }

  if (hy < 0x0020000000000000LL)
    {
      if (x + x > y)
	{
	  x -= y;
	  ++cquo;
	  if (x + x >= y)
	    {
	      x -= y;
	      ++cquo;
	    }
	}
    }
  else
    {
      long double y_half = 0.5L * y;
      if (x > y_half)
	{
	  x -= y;
	  ++cquo;
	  if (x >= y_half)
	    {
	      x -= y;
	      ++cquo;
	    }
	}
    }

  *quo = qs ? -cquo : cquo;

  /* Ensure correct sign of zero result in round-downward mode.  */
  if (x == 0.0L)
    x = 0.0L;
  if (sx)
    x = -x;
  return x;
}
long_double_symbol (libm, __remquol, remquol);