about summary refs log tree commit diff
path: root/sysdeps/ieee754/ldbl-128ibm/k_sincosl.c
blob: 83f7b1e6c257ce24c9b24a1c2a1193f30ee06b16 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/* Quad-precision floating point sine and cosine on <-pi/4,pi/4>.
   Copyright (C) 1999-2024 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <https://www.gnu.org/licenses/>.  */

#include <float.h>
#include <math.h>
#include <math_private.h>
#include <math-underflow.h>

static const long double c[] = {
#define ONE c[0]
 1.00000000000000000000000000000000000E+00L, /* 3fff0000000000000000000000000000 */

/* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 )
   x in <0,1/256>  */
#define SCOS1 c[1]
#define SCOS2 c[2]
#define SCOS3 c[3]
#define SCOS4 c[4]
#define SCOS5 c[5]
-5.00000000000000000000000000000000000E-01L, /* bffe0000000000000000000000000000 */
 4.16666666666666666666666666556146073E-02L, /* 3ffa5555555555555555555555395023 */
-1.38888888888888888888309442601939728E-03L, /* bff56c16c16c16c16c16a566e42c0375 */
 2.48015873015862382987049502531095061E-05L, /* 3fefa01a01a019ee02dcf7da2d6d5444 */
-2.75573112601362126593516899592158083E-07L, /* bfe927e4f5dce637cb0b54908754bde0 */

/* cos x ~ ONE + x^2 ( COS1 + COS2 * x^2 + ... + COS7 * x^12 + COS8 * x^14 )
   x in <0,0.1484375>  */
#define COS1 c[6]
#define COS2 c[7]
#define COS3 c[8]
#define COS4 c[9]
#define COS5 c[10]
#define COS6 c[11]
#define COS7 c[12]
#define COS8 c[13]
-4.99999999999999999999999999999999759E-01L, /* bffdfffffffffffffffffffffffffffb */
 4.16666666666666666666666666651287795E-02L, /* 3ffa5555555555555555555555516f30 */
-1.38888888888888888888888742314300284E-03L, /* bff56c16c16c16c16c16c16a463dfd0d */
 2.48015873015873015867694002851118210E-05L, /* 3fefa01a01a01a01a0195cebe6f3d3a5 */
-2.75573192239858811636614709689300351E-07L, /* bfe927e4fb7789f5aa8142a22044b51f */
 2.08767569877762248667431926878073669E-09L, /* 3fe21eed8eff881d1e9262d7adff4373 */
-1.14707451049343817400420280514614892E-11L, /* bfda9397496922a9601ed3d4ca48944b */
 4.77810092804389587579843296923533297E-14L, /* 3fd2ae5f8197cbcdcaf7c3fb4523414c */

/* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 )
   x in <0,1/256>  */
#define SSIN1 c[14]
#define SSIN2 c[15]
#define SSIN3 c[16]
#define SSIN4 c[17]
#define SSIN5 c[18]
-1.66666666666666666666666666666666659E-01L, /* bffc5555555555555555555555555555 */
 8.33333333333333333333333333146298442E-03L, /* 3ff81111111111111111111110fe195d */
-1.98412698412698412697726277416810661E-04L, /* bff2a01a01a01a01a019e7121e080d88 */
 2.75573192239848624174178393552189149E-06L, /* 3fec71de3a556c640c6aaa51aa02ab41 */
-2.50521016467996193495359189395805639E-08L, /* bfe5ae644ee90c47dc71839de75b2787 */

/* sin x ~ ONE * x + x^3 ( SIN1 + SIN2 * x^2 + ... + SIN7 * x^12 + SIN8 * x^14 )
   x in <0,0.1484375>  */
#define SIN1 c[19]
#define SIN2 c[20]
#define SIN3 c[21]
#define SIN4 c[22]
#define SIN5 c[23]
#define SIN6 c[24]
#define SIN7 c[25]
#define SIN8 c[26]
-1.66666666666666666666666666666666538e-01L, /* bffc5555555555555555555555555550 */
 8.33333333333333333333333333307532934e-03L, /* 3ff811111111111111111111110e7340 */
-1.98412698412698412698412534478712057e-04L, /* bff2a01a01a01a01a01a019e7a626296 */
 2.75573192239858906520896496653095890e-06L, /* 3fec71de3a556c7338fa38527474b8f5 */
-2.50521083854417116999224301266655662e-08L, /* bfe5ae64567f544e16c7de65c2ea551f */
 1.60590438367608957516841576404938118e-10L, /* 3fde6124613a811480538a9a41957115 */
-7.64716343504264506714019494041582610e-13L, /* bfd6ae7f3d5aef30c7bc660b060ef365 */
 2.81068754939739570236322404393398135e-15L, /* 3fce9510115aabf87aceb2022a9a9180 */
};

#define SINCOSL_COS_HI 0
#define SINCOSL_COS_LO 1
#define SINCOSL_SIN_HI 2
#define SINCOSL_SIN_LO 3
extern const long double __sincosl_table[];

void
__kernel_sincosl(long double x, long double y, long double *sinx, long double *cosx, int iy)
{
  long double h, l, z, sin_l, cos_l_m1;
  int64_t ix;
  uint32_t tix, hix, index;
  double xhi, hhi;

  xhi = ldbl_high (x);
  EXTRACT_WORDS64 (ix, xhi);
  tix = ((uint64_t)ix) >> 32;
  tix &= ~0x80000000;			/* tix = |x|'s high 32 bits */
  if (tix < 0x3fc30000)			/* |x| < 0.1484375 */
    {
      /* Argument is small enough to approximate it by a Chebyshev
	 polynomial of degree 16(17).  */
      if (tix < 0x3c600000)		/* |x| < 2^-57 */
	{
	  math_check_force_underflow (x);
	  if (!((int)x))			/* generate inexact */
	    {
	      *sinx = x;
	      *cosx = ONE;
	      return;
	    }
	}
      z = x * x;
      *sinx = x + (x * (z*(SIN1+z*(SIN2+z*(SIN3+z*(SIN4+
			z*(SIN5+z*(SIN6+z*(SIN7+z*SIN8)))))))));
      *cosx = ONE + (z*(COS1+z*(COS2+z*(COS3+z*(COS4+
		     z*(COS5+z*(COS6+z*(COS7+z*COS8))))))));
    }
  else
    {
      /* So that we don't have to use too large polynomial,  we find
	 l and h such that x = l + h,  where fabsl(l) <= 1.0/256 with 83
	 possible values for h.  We look up cosl(h) and sinl(h) in
	 pre-computed tables,  compute cosl(l) and sinl(l) using a
	 Chebyshev polynomial of degree 10(11) and compute
	 sinl(h+l) = sinl(h)cosl(l) + cosl(h)sinl(l) and
	 cosl(h+l) = cosl(h)cosl(l) - sinl(h)sinl(l).  */
      int six = tix;
      tix = ((six - 0x3ff00000) >> 4) + 0x3fff0000;
      index = 0x3ffe - (tix >> 16);
      hix = (tix + (0x200 << index)) & (0xfffffc00 << index);
      x = fabsl (x);
      switch (index)
	{
	case 0: index = ((45 << 10) + hix - 0x3ffe0000) >> 8; break;
	case 1: index = ((13 << 11) + hix - 0x3ffd0000) >> 9; break;
	default:
	case 2: index = (hix - 0x3ffc3000) >> 10; break;
	}
      hix = (hix << 4) & 0x3fffffff;
/*
    The following should work for double but generates the wrong index.
    For now the code above converts double to ieee extended to compute
    the index back to double for the h value.


      index = 0x3fe - (tix >> 20);
      hix = (tix + (0x2000 << index)) & (0xffffc000 << index);
      if (signbit (x))
	{
	  x = -x;
	  y = -y;
	}
      switch (index)
	{
	case 0: index = ((45 << 14) + hix - 0x3fe00000) >> 12; break;
	case 1: index = ((13 << 15) + hix - 0x3fd00000) >> 13; break;
	default:
	case 2: index = (hix - 0x3fc30000) >> 14; break;
	}
*/
      INSERT_WORDS64 (hhi, ((uint64_t)hix) << 32);
      h = hhi;
      if (iy)
	l = y - (h - x);
      else
	l = x - h;
      z = l * l;
      sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5)))));
      cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5))));
      z = __sincosl_table [index + SINCOSL_SIN_HI]
	  + (__sincosl_table [index + SINCOSL_SIN_LO]
	     + (__sincosl_table [index + SINCOSL_SIN_HI] * cos_l_m1)
	     + (__sincosl_table [index + SINCOSL_COS_HI] * sin_l));
      *sinx = (ix < 0) ? -z : z;
      *cosx = __sincosl_table [index + SINCOSL_COS_HI]
	      + (__sincosl_table [index + SINCOSL_COS_LO]
		 - (__sincosl_table [index + SINCOSL_SIN_HI] * sin_l
		    - __sincosl_table [index + SINCOSL_COS_HI] * cos_l_m1));
    }
}