about summary refs log tree commit diff
path: root/sysdeps/ieee754/ldbl-128/e_gammal_r.c
blob: 9fd0dc046dc6a20d8966fc13c66422806d1f68cb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/* Implementation of gamma function according to ISO C.
   Copyright (C) 1997-2018 Free Software Foundation, Inc.
   This file is part of the GNU C Library.
   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and
		  Jakub Jelinek <jj@ultra.linux.cz, 1999.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <http://www.gnu.org/licenses/>.  */

#include <math.h>
#include <math_private.h>
#include <fenv_private.h>
#include <math-underflow.h>
#include <float.h>

/* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's
   approximation to gamma function.  */

static const _Float128 gamma_coeff[] =
  {
    L(0x1.5555555555555555555555555555p-4),
    L(-0xb.60b60b60b60b60b60b60b60b60b8p-12),
    L(0x3.4034034034034034034034034034p-12),
    L(-0x2.7027027027027027027027027028p-12),
    L(0x3.72a3c5631fe46ae1d4e700dca8f2p-12),
    L(-0x7.daac36664f1f207daac36664f1f4p-12),
    L(0x1.a41a41a41a41a41a41a41a41a41ap-8),
    L(-0x7.90a1b2c3d4e5f708192a3b4c5d7p-8),
    L(0x2.dfd2c703c0cfff430edfd2c703cp-4),
    L(-0x1.6476701181f39edbdb9ce625987dp+0),
    L(0xd.672219167002d3a7a9c886459cp+0),
    L(-0x9.cd9292e6660d55b3f712eb9e07c8p+4),
    L(0x8.911a740da740da740da740da741p+8),
    L(-0x8.d0cc570e255bf59ff6eec24b49p+12),
  };

#define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0]))

/* Return gamma (X), for positive X less than 1775, in the form R *
   2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to
   avoid overflow or underflow in intermediate calculations.  */

static _Float128
gammal_positive (_Float128 x, int *exp2_adj)
{
  int local_signgam;
  if (x < L(0.5))
    {
      *exp2_adj = 0;
      return __ieee754_expl (__ieee754_lgammal_r (x + 1, &local_signgam)) / x;
    }
  else if (x <= L(1.5))
    {
      *exp2_adj = 0;
      return __ieee754_expl (__ieee754_lgammal_r (x, &local_signgam));
    }
  else if (x < L(12.5))
    {
      /* Adjust into the range for using exp (lgamma).  */
      *exp2_adj = 0;
      _Float128 n = __ceill (x - L(1.5));
      _Float128 x_adj = x - n;
      _Float128 eps;
      _Float128 prod = __gamma_productl (x_adj, 0, n, &eps);
      return (__ieee754_expl (__ieee754_lgammal_r (x_adj, &local_signgam))
	      * prod * (1 + eps));
    }
  else
    {
      _Float128 eps = 0;
      _Float128 x_eps = 0;
      _Float128 x_adj = x;
      _Float128 prod = 1;
      if (x < 24)
	{
	  /* Adjust into the range for applying Stirling's
	     approximation.  */
	  _Float128 n = __ceill (24 - x);
	  x_adj = x + n;
	  x_eps = (x - (x_adj - n));
	  prod = __gamma_productl (x_adj - n, x_eps, n, &eps);
	}
      /* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)).
	 Compute gamma (X_ADJ + X_EPS) using Stirling's approximation,
	 starting by computing pow (X_ADJ, X_ADJ) with a power of 2
	 factored out.  */
      _Float128 exp_adj = -eps;
      _Float128 x_adj_int = __roundl (x_adj);
      _Float128 x_adj_frac = x_adj - x_adj_int;
      int x_adj_log2;
      _Float128 x_adj_mant = __frexpl (x_adj, &x_adj_log2);
      if (x_adj_mant < M_SQRT1_2l)
	{
	  x_adj_log2--;
	  x_adj_mant *= 2;
	}
      *exp2_adj = x_adj_log2 * (int) x_adj_int;
      _Float128 ret = (__ieee754_powl (x_adj_mant, x_adj)
		       * __ieee754_exp2l (x_adj_log2 * x_adj_frac)
		       * __ieee754_expl (-x_adj)
		       * sqrtl (2 * M_PIl / x_adj)
		       / prod);
      exp_adj += x_eps * __ieee754_logl (x_adj);
      _Float128 bsum = gamma_coeff[NCOEFF - 1];
      _Float128 x_adj2 = x_adj * x_adj;
      for (size_t i = 1; i <= NCOEFF - 1; i++)
	bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i];
      exp_adj += bsum / x_adj;
      return ret + ret * __expm1l (exp_adj);
    }
}

_Float128
__ieee754_gammal_r (_Float128 x, int *signgamp)
{
  int64_t hx;
  uint64_t lx;
  _Float128 ret;

  GET_LDOUBLE_WORDS64 (hx, lx, x);

  if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
    {
      /* Return value for x == 0 is Inf with divide by zero exception.  */
      *signgamp = 0;
      return 1.0 / x;
    }
  if (hx < 0 && (uint64_t) hx < 0xffff000000000000ULL && rintl (x) == x)
    {
      /* Return value for integer x < 0 is NaN with invalid exception.  */
      *signgamp = 0;
      return (x - x) / (x - x);
    }
  if (hx == 0xffff000000000000ULL && lx == 0)
    {
      /* x == -Inf.  According to ISO this is NaN.  */
      *signgamp = 0;
      return x - x;
    }
  if ((hx & 0x7fff000000000000ULL) == 0x7fff000000000000ULL)
    {
      /* Positive infinity (return positive infinity) or NaN (return
	 NaN).  */
      *signgamp = 0;
      return x + x;
    }

  if (x >= 1756)
    {
      /* Overflow.  */
      *signgamp = 0;
      return LDBL_MAX * LDBL_MAX;
    }
  else
    {
      SET_RESTORE_ROUNDL (FE_TONEAREST);
      if (x > 0)
	{
	  *signgamp = 0;
	  int exp2_adj;
	  ret = gammal_positive (x, &exp2_adj);
	  ret = __scalbnl (ret, exp2_adj);
	}
      else if (x >= -LDBL_EPSILON / 4)
	{
	  *signgamp = 0;
	  ret = 1 / x;
	}
      else
	{
	  _Float128 tx = __truncl (x);
	  *signgamp = (tx == 2 * __truncl (tx / 2)) ? -1 : 1;
	  if (x <= -1775)
	    /* Underflow.  */
	    ret = LDBL_MIN * LDBL_MIN;
	  else
	    {
	      _Float128 frac = tx - x;
	      if (frac > L(0.5))
		frac = 1 - frac;
	      _Float128 sinpix = (frac <= L(0.25)
				  ? __sinl (M_PIl * frac)
				  : __cosl (M_PIl * (L(0.5) - frac)));
	      int exp2_adj;
	      ret = M_PIl / (-x * sinpix
			     * gammal_positive (-x, &exp2_adj));
	      ret = __scalbnl (ret, -exp2_adj);
	      math_check_force_underflow_nonneg (ret);
	    }
	}
    }
  if (isinf (ret) && x != 0)
    {
      if (*signgamp < 0)
	return -(-__copysignl (LDBL_MAX, ret) * LDBL_MAX);
      else
	return __copysignl (LDBL_MAX, ret) * LDBL_MAX;
    }
  else if (ret == 0)
    {
      if (*signgamp < 0)
	return -(-__copysignl (LDBL_MIN, ret) * LDBL_MIN);
      else
	return __copysignl (LDBL_MIN, ret) * LDBL_MIN;
    }
  else
    return ret;
}
strong_alias (__ieee754_gammal_r, __gammal_r_finite)