about summary refs log tree commit diff
path: root/sysdeps/ieee754/ldbl-128/e_atanhl.c
blob: a5a7ee0712b13e76e51812566cb4e96fd24f8448 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
/* s_atanhl.c -- long double version of s_atan.c.
 * Conversion to long double by Ulrich Drepper,
 * Cygnus Support, drepper@cygnus.com.
 */

/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

/* __ieee754_atanhl(x)
 * Method :
 *    1.Reduced x to positive by atanh(-x) = -atanh(x)
 *    2.For x>=0.5
 *                   1              2x                          x
 *	atanhl(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
 *                   2             1 - x                      1 - x
 *
 *	For x<0.5
 *	atanhl(x) = 0.5*log1pl(2x+2x*x/(1-x))
 *
 * Special cases:
 *	atanhl(x) is NaN if |x| > 1 with signal;
 *	atanhl(NaN) is that NaN with no signal;
 *	atanhl(+-1) is +-INF with signal.
 *
 */

#include <float.h>
#include <math.h>
#include <math_private.h>

static const long double one = 1.0L, huge = 1e4900L;

static const long double zero = 0.0L;

long double
__ieee754_atanhl(long double x)
{
	long double t;
	u_int32_t jx, ix;
	ieee854_long_double_shape_type u;

	u.value = x;
	jx = u.parts32.w0;
	ix = jx & 0x7fffffff;
	u.parts32.w0 = ix;
	if (ix >= 0x3fff0000) /* |x| >= 1.0 or infinity or NaN */
	  {
	    if (u.value == one)
	      return x/zero;
	    else
	      return (x-x)/(x-x);
	  }
	if(ix<0x3fc60000 && (huge+x)>zero)	/* x < 2^-57 */
	  {
	    if (fabsl (x) < LDBL_MIN)
	      {
		long double force_underflow = x * x;
		math_force_eval (force_underflow);
	      }
	    return x;
	  }

	if(ix<0x3ffe0000) {		/* x < 0.5 */
	    t = u.value+u.value;
	    t = 0.5*__log1pl(t+t*u.value/(one-u.value));
	} else
	    t = 0.5*__log1pl((u.value+u.value)/(one-u.value));
	if(jx & 0x80000000) return -t; else return t;
}
strong_alias (__ieee754_atanhl, __atanhl_finite)