1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
|
/* Compute sine of argument.
Copyright (C) 2017 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <errno.h>
#include <math.h>
#include <math_private.h>
#include <libm-alias-float.h>
#include "s_sincosf.h"
#ifndef SINF
# define SINF_FUNC __sinf
#else
# define SINF_FUNC SINF
#endif
float
SINF_FUNC (float x)
{
double cx;
double theta = x;
double abstheta = fabs (theta);
/* If |x|< Pi/4. */
if (isless (abstheta, M_PI_4))
{
if (abstheta >= 0x1p-5) /* |x| >= 2^-5. */
{
const double theta2 = theta * theta;
/* Chebyshev polynomial of the form for sin
x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))). */
cx = S3 + theta2 * S4;
cx = S2 + theta2 * cx;
cx = S1 + theta2 * cx;
cx = S0 + theta2 * cx;
cx = theta + theta * theta2 * cx;
return cx;
}
else if (abstheta >= 0x1p-27) /* |x| >= 2^-27. */
{
/* A simpler Chebyshev approximation is close enough for this range:
for sin: x+x^3*(SS0+x^2*SS1). */
const double theta2 = theta * theta;
cx = SS0 + theta2 * SS1;
cx = theta + theta * theta2 * cx;
return cx;
}
else
{
/* Handle some special cases. */
if (theta)
return theta - (theta * SMALL);
else
return theta;
}
}
else /* |x| >= Pi/4. */
{
unsigned int signbit = isless (x, 0);
if (isless (abstheta, 9 * M_PI_4)) /* |x| < 9*Pi/4. */
{
/* There are cases where FE_UPWARD rounding mode can
produce a result of abstheta * inv_PI_4 == 9,
where abstheta < 9pi/4, so the domain for
pio2_table must go to 5 (9 / 2 + 1). */
unsigned int n = (abstheta * inv_PI_4) + 1;
theta = abstheta - pio2_table[n / 2];
return reduced_sin (theta, n, signbit);
}
else if (isless (abstheta, INFINITY))
{
if (abstheta < 0x1p+23) /* |x| < 2^23. */
{
unsigned int n = ((unsigned int) (abstheta * inv_PI_4)) + 1;
double x = n / 2;
theta = (abstheta - x * PI_2_hi) - x * PI_2_lo;
/* Argument reduction needed. */
return reduced_sin (theta, n, signbit);
}
else /* |x| >= 2^23. */
{
x = fabsf (x);
int exponent;
GET_FLOAT_WORD (exponent, x);
exponent
= (exponent >> FLOAT_EXPONENT_SHIFT) - FLOAT_EXPONENT_BIAS;
exponent += 3;
exponent /= 28;
double a = invpio4_table[exponent] * x;
double b = invpio4_table[exponent + 1] * x;
double c = invpio4_table[exponent + 2] * x;
double d = invpio4_table[exponent + 3] * x;
uint64_t l = a;
l &= ~0x7;
a -= l;
double e = a + b;
l = e;
e = a - l;
if (l & 1)
{
e -= 1.0;
e += b;
e += c;
e += d;
e *= M_PI_4;
return reduced_sin (e, l + 1, signbit);
}
else
{
e += b;
e += c;
e += d;
if (e <= 1.0)
{
e *= M_PI_4;
return reduced_sin (e, l + 1, signbit);
}
else
{
l++;
e -= 2.0;
e *= M_PI_4;
return reduced_sin (e, l + 1, signbit);
}
}
}
}
else
{
int32_t ix;
/* High word of x. */
GET_FLOAT_WORD (ix, abstheta);
/* Sin(Inf or NaN) is NaN. */
if (ix == 0x7f800000)
__set_errno (EDOM);
return x - x;
}
}
}
#ifndef SINF
libm_alias_float (__sin, sin)
#endif
|