1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
|
/* Used by sinf, cosf and sincosf functions.
Copyright (C) 2017-2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <stdint.h>
#include <math.h>
#include "math_config.h"
/* Chebyshev constants for cos, range -PI/4 - PI/4. */
static const double C0 = -0x1.ffffffffe98aep-2;
static const double C1 = 0x1.55555545c50c7p-5;
static const double C2 = -0x1.6c16b348b6874p-10;
static const double C3 = 0x1.a00eb9ac43ccp-16;
static const double C4 = -0x1.23c97dd8844d7p-22;
/* Chebyshev constants for sin, range -PI/4 - PI/4. */
static const double S0 = -0x1.5555555551cd9p-3;
static const double S1 = 0x1.1111110c2688bp-7;
static const double S2 = -0x1.a019f8b4bd1f9p-13;
static const double S3 = 0x1.71d7264e6b5b4p-19;
static const double S4 = -0x1.a947e1674b58ap-26;
/* Chebyshev constants for sin, range 2^-27 - 2^-5. */
static const double SS0 = -0x1.555555543d49dp-3;
static const double SS1 = 0x1.110f475cec8c5p-7;
/* Chebyshev constants for cos, range 2^-27 - 2^-5. */
static const double CC0 = -0x1.fffffff5cc6fdp-2;
static const double CC1 = 0x1.55514b178dac5p-5;
/* PI/2 with 98 bits of accuracy. */
static const double PI_2_hi = 0x1.921fb544p+0;
static const double PI_2_lo = 0x1.0b4611a626332p-34;
static const double SMALL = 0x1p-50; /* 2^-50. */
static const double inv_PI_4 = 0x1.45f306dc9c883p+0; /* 4/PI. */
#define FLOAT_EXPONENT_SHIFT 23
#define FLOAT_EXPONENT_BIAS 127
static const double pio2_table[] = {
0 * M_PI_2,
1 * M_PI_2,
2 * M_PI_2,
3 * M_PI_2,
4 * M_PI_2,
5 * M_PI_2
};
static const double invpio4_table[] = {
0x0p+0,
0x1.45f306cp+0,
0x1.c9c882ap-28,
0x1.4fe13a8p-58,
0x1.f47d4dp-85,
0x1.bb81b6cp-112,
0x1.4acc9ep-142,
0x1.0e4107cp-169
};
static const double ones[] = { 1.0, -1.0 };
/* Compute the sine value using Chebyshev polynomials where
THETA is the range reduced absolute value of the input
and it is less than Pi/4,
N is calculated as trunc(|x|/(Pi/4)) + 1 and it is used to decide
whether a sine or cosine approximation is more accurate and
SIGNBIT is used to add the correct sign after the Chebyshev
polynomial is computed. */
static inline float
reduced_sin (const double theta, const unsigned int n,
const unsigned int signbit)
{
double sx;
const double theta2 = theta * theta;
/* We are operating on |x|, so we need to add back the original
signbit for sinf. */
double sign;
/* Determine positive or negative primary interval. */
sign = ones[((n >> 2) & 1) ^ signbit];
/* Are we in the primary interval of sin or cos? */
if ((n & 2) == 0)
{
/* Here sinf() is calculated using sin Chebyshev polynomial:
x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))). */
sx = S3 + theta2 * S4; /* S3+x^2*S4. */
sx = S2 + theta2 * sx; /* S2+x^2*(S3+x^2*S4). */
sx = S1 + theta2 * sx; /* S1+x^2*(S2+x^2*(S3+x^2*S4)). */
sx = S0 + theta2 * sx; /* S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4))). */
sx = theta + theta * theta2 * sx;
}
else
{
/* Here sinf() is calculated using cos Chebyshev polynomial:
1.0+x^2*(C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4)))). */
sx = C3 + theta2 * C4; /* C3+x^2*C4. */
sx = C2 + theta2 * sx; /* C2+x^2*(C3+x^2*C4). */
sx = C1 + theta2 * sx; /* C1+x^2*(C2+x^2*(C3+x^2*C4)). */
sx = C0 + theta2 * sx; /* C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4))). */
sx = 1.0 + theta2 * sx;
}
/* Add in the signbit and assign the result. */
return sign * sx;
}
/* Compute the cosine value using Chebyshev polynomials where
THETA is the range reduced absolute value of the input
and it is less than Pi/4,
N is calculated as trunc(|x|/(Pi/4)) + 1 and it is used to decide
whether a sine or cosine approximation is more accurate and
the sign of the result. */
static inline float
reduced_cos (double theta, unsigned int n)
{
double sign, cx;
const double theta2 = theta * theta;
/* Determine positive or negative primary interval. */
n += 2;
sign = ones[(n >> 2) & 1];
/* Are we in the primary interval of sin or cos? */
if ((n & 2) == 0)
{
/* Here cosf() is calculated using sin Chebyshev polynomial:
x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))). */
cx = S3 + theta2 * S4;
cx = S2 + theta2 * cx;
cx = S1 + theta2 * cx;
cx = S0 + theta2 * cx;
cx = theta + theta * theta2 * cx;
}
else
{
/* Here cosf() is calculated using cos Chebyshev polynomial:
1.0+x^2*(C0+x^2*(C1+x^2*(C2+x^2*(C3+x^2*C4)))). */
cx = C3 + theta2 * C4;
cx = C2 + theta2 * cx;
cx = C1 + theta2 * cx;
cx = C0 + theta2 * cx;
cx = 1. + theta2 * cx;
}
return sign * cx;
}
/* 2PI * 2^-64. */
static const double pi63 = 0x1.921FB54442D18p-62;
/* PI / 4. */
static const double pio4 = 0x1.921FB54442D18p-1;
/* The constants and polynomials for sine and cosine. */
typedef struct
{
double sign[4]; /* Sign of sine in quadrants 0..3. */
double hpi_inv; /* 2 / PI ( * 2^24 if !TOINT_INTRINSICS). */
double hpi; /* PI / 2. */
double c0, c1, c2, c3, c4; /* Cosine polynomial. */
double s1, s2, s3; /* Sine polynomial. */
} sincos_t;
/* Polynomial data (the cosine polynomial is negated in the 2nd entry). */
extern const sincos_t __sincosf_table[2] attribute_hidden;
/* Table with 4/PI to 192 bit precision. */
extern const uint32_t __inv_pio4[] attribute_hidden;
/* Top 12 bits of the float representation with the sign bit cleared. */
static inline uint32_t
abstop12 (float x)
{
return (asuint (x) >> 20) & 0x7ff;
}
/* Compute the sine and cosine of inputs X and X2 (X squared), using the
polynomial P and store the results in SINP and COSP. N is the quadrant,
if odd the cosine and sine polynomials are swapped. */
static inline void
sincosf_poly (double x, double x2, const sincos_t *p, int n, float *sinp,
float *cosp)
{
double x3, x4, x5, x6, s, c, c1, c2, s1;
x4 = x2 * x2;
x3 = x2 * x;
c2 = p->c3 + x2 * p->c4;
s1 = p->s2 + x2 * p->s3;
/* Swap sin/cos result based on quadrant. */
float *tmp = (n & 1 ? cosp : sinp);
cosp = (n & 1 ? sinp : cosp);
sinp = tmp;
c1 = p->c0 + x2 * p->c1;
x5 = x3 * x2;
x6 = x4 * x2;
s = x + x3 * p->s1;
c = c1 + x4 * p->c2;
*sinp = s + x5 * s1;
*cosp = c + x6 * c2;
}
/* Fast range reduction using single multiply-subtract. Return the modulo of
X as a value between -PI/4 and PI/4 and store the quadrant in NP.
The values for PI/2 and 2/PI are accessed via P. Since PI/2 as a double
is accurate to 55 bits and the worst-case cancellation happens at 6 * PI/4,
the result is accurate for |X| <= 120.0. */
static inline double
reduce_fast (double x, const sincos_t *p, int *np)
{
double r;
#if TOINT_INTRINSICS
/* Use fast round and lround instructions when available. */
r = x * p->hpi_inv;
*np = converttoint (r);
return x - roundtoint (r) * p->hpi;
#else
/* Use scaled float to int conversion with explicit rounding.
hpi_inv is prescaled by 2^24 so the quadrant ends up in bits 24..31.
This avoids inaccuracies introduced by truncating negative values. */
r = x * p->hpi_inv;
int n = ((int32_t)r + 0x800000) >> 24;
*np = n;
return x - n * p->hpi;
#endif
}
/* Reduce the range of XI to a multiple of PI/2 using fast integer arithmetic.
XI is a reinterpreted float and must be >= 2.0f (the sign bit is ignored).
Return the modulo between -PI/4 and PI/4 and store the quadrant in NP.
Reduction uses a table of 4/PI with 192 bits of precision. A 32x96->128 bit
multiply computes the exact 2.62-bit fixed-point modulo. Since the result
can have at most 29 leading zeros after the binary point, the double
precision result is accurate to 33 bits. */
static inline double
reduce_large (uint32_t xi, int *np)
{
const uint32_t *arr = &__inv_pio4[(xi >> 26) & 15];
int shift = (xi >> 23) & 7;
uint64_t n, res0, res1, res2;
xi = (xi & 0xffffff) | 0x800000;
xi <<= shift;
res0 = xi * arr[0];
res1 = (uint64_t)xi * arr[4];
res2 = (uint64_t)xi * arr[8];
res0 = (res2 >> 32) | (res0 << 32);
res0 += res1;
n = (res0 + (1ULL << 61)) >> 62;
res0 -= n << 62;
double x = (int64_t)res0;
*np = n;
return x * pi63;
}
|