1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
/* Floating-point remainder function.
Copyright (C) 2023 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <libm-alias-finite.h>
#include <libm-alias-float.h>
#include <math-svid-compat.h>
#include <math.h>
#include "math_config.h"
/* With x = mx * 2^ex and y = my * 2^ey (mx, my, ex, ey being integers), the
simplest implementation is:
mx * 2^ex == 2 * mx * 2^(ex - 1)
or
while (ex > ey)
{
mx *= 2;
--ex;
mx %= my;
}
With the mathematical equivalence of:
r == x % y == (x % (N * y)) % y
And with mx/my being mantissa of double floating point number (which uses
less bits than the storage type), on each step the argument reduction can
be improved by 8 (which is the size of uint32_t minus MANTISSA_WIDTH plus
the signal bit):
mx * 2^ex == 2^8 * mx * 2^(ex - 8)
or
while (ex > ey)
{
mx << 8;
ex -= 8;
mx %= my;
} */
float
__fmodf (float x, float y)
{
uint32_t hx = asuint (x);
uint32_t hy = asuint (y);
uint32_t sx = hx & SIGN_MASK;
/* Get |x| and |y|. */
hx ^= sx;
hy &= ~SIGN_MASK;
/* Special cases:
- If x or y is a Nan, NaN is returned.
- If x is an inifinity, a NaN is returned.
- If y is zero, Nan is returned.
- If x is +0/-0, and y is not zero, +0/-0 is returned. */
if (__glibc_unlikely (hy == 0
|| hx >= EXPONENT_MASK || hy > EXPONENT_MASK))
{
if (is_nan (hx) || is_nan (hy))
return (x * y) / (x * y);
return __math_edomf ((x * y) / (x * y));
}
if (__glibc_unlikely (hx <= hy))
{
if (hx < hy)
return x;
return asfloat (sx);
}
int ex = hx >> MANTISSA_WIDTH;
int ey = hy >> MANTISSA_WIDTH;
/* Common case where exponents are close: ey >= -103 and |x/y| < 2^8, */
if (__glibc_likely (ey > MANTISSA_WIDTH && ex - ey <= EXPONENT_WIDTH))
{
uint64_t mx = (hx & MANTISSA_MASK) | (MANTISSA_MASK + 1);
uint64_t my = (hy & MANTISSA_MASK) | (MANTISSA_MASK + 1);
uint32_t d = (ex == ey) ? (mx - my) : (mx << (ex - ey)) % my;
return make_float (d, ey - 1, sx);
}
/* Special case, both x and y are subnormal. */
if (__glibc_unlikely (ex == 0 && ey == 0))
return asfloat (sx | hx % hy);
/* Convert |x| and |y| to 'mx + 2^ex' and 'my + 2^ey'. Assume that hx is
not subnormal by conditions above. */
uint32_t mx = get_mantissa (hx) | (MANTISSA_MASK + 1);
ex--;
uint32_t my = get_mantissa (hy) | (MANTISSA_MASK + 1);
int lead_zeros_my = EXPONENT_WIDTH;
if (__glibc_likely (ey > 0))
ey--;
else
{
my = hy;
lead_zeros_my = __builtin_clz (my);
}
int tail_zeros_my = __builtin_ctz (my);
int sides_zeroes = lead_zeros_my + tail_zeros_my;
int exp_diff = ex - ey;
int right_shift = exp_diff < tail_zeros_my ? exp_diff : tail_zeros_my;
my >>= right_shift;
exp_diff -= right_shift;
ey += right_shift;
int left_shift = exp_diff < EXPONENT_WIDTH ? exp_diff : EXPONENT_WIDTH;
mx <<= left_shift;
exp_diff -= left_shift;
mx %= my;
if (__glibc_unlikely (mx == 0))
return asfloat (sx);
if (exp_diff == 0)
return make_float (mx, ey, sx);
/* Assume modulo/divide operation is slow, so use multiplication with invert
values. */
uint32_t inv_hy = UINT32_MAX / my;
while (exp_diff > sides_zeroes) {
exp_diff -= sides_zeroes;
uint32_t hd = (mx * inv_hy) >> (BIT_WIDTH - sides_zeroes);
mx <<= sides_zeroes;
mx -= hd * my;
while (__glibc_unlikely (mx > my))
mx -= my;
}
uint32_t hd = (mx * inv_hy) >> (BIT_WIDTH - exp_diff);
mx <<= exp_diff;
mx -= hd * my;
while (__glibc_unlikely (mx > my))
mx -= my;
return make_float (mx, ey, sx);
}
strong_alias (__fmodf, __ieee754_fmodf)
#if LIBM_SVID_COMPAT
versioned_symbol (libm, __fmodf, fmodf, GLIBC_2_38);
libm_alias_float_other (__fmod, fmod)
#else
libm_alias_float (__fmod, fmod)
#endif
libm_alias_finite (__ieee754_fmodf, __fmodf)
|