1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
|
/*
* IBM Accurate Mathematical Library
* Copyright (C) 2001-2023 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, see <https://www.gnu.org/licenses/>.
*/
/******************************************************************/
/* */
/* MODULE_NAME:utan.h */
/* */
/* common data and variables prototype and definition */
/******************************************************************/
#ifndef UTAN_H
#define UTAN_H
#ifdef BIG_ENDI
static const mynumber
/* polynomial I */
/**/ d3 = {{0x3FD55555, 0x55555555} }, /* 0.333... */
/**/ d5 = {{0x3FC11111, 0x111107C6} }, /* 0.133... */
/**/ d7 = {{0x3FABA1BA, 0x1CDB8745} }, /* . */
/**/ d9 = {{0x3F9664ED, 0x49CFC666} }, /* . */
/**/ d11 = {{0x3F82385A, 0x3CF2E4EA} }, /* . */
/* polynomial II */
/* polynomial III */
/**/ e0 = {{0x3FD55555, 0x55554DBD} }, /* . */
/**/ e1 = {{0x3FC11112, 0xE0A6B45F} }, /* . */
/* constants */
/**/ mfftnhf = {{0xc02f0000, 0x00000000} }, /*-15.5 */
/**/ g1 = {{0x3e4b096c, 0x00000000} }, /* 1.259e-8 */
/**/ g2 = {{0x3faf212d, 0x00000000} }, /* 0.0608 */
/**/ g3 = {{0x3fe92f1a, 0x00000000} }, /* 0.787 */
/**/ g4 = {{0x40390000, 0x00000000} }, /* 25.0 */
/**/ g5 = {{0x4197d784, 0x00000000} }, /* 1e8 */
/**/ gy2 = {{0x3faf212d, 0x00000000} }, /* 0.0608 */
/**/ mp1 = {{0x3FF921FB, 0x58000000} },
/**/ mp2 = {{0xBE4DDE97, 0x3C000000} },
/**/ mp3 = {{0xBC8CB3B3, 0x99D747F2} },
/**/ pp3 = {{0xBC8CB3B3, 0x98000000} },
/**/ pp4 = {{0xbacd747f, 0x23e32ed7} },
/**/ hpinv = {{0x3FE45F30, 0x6DC9C883} },
/**/ toint = {{0x43380000, 0x00000000} };
#else
#ifdef LITTLE_ENDI
static const mynumber
/* polynomial I */
/**/ d3 = {{0x55555555, 0x3FD55555} }, /* 0.333... */
/**/ d5 = {{0x111107C6, 0x3FC11111} }, /* 0.133... */
/**/ d7 = {{0x1CDB8745, 0x3FABA1BA} }, /* . */
/**/ d9 = {{0x49CFC666, 0x3F9664ED} }, /* . */
/**/ d11 = {{0x3CF2E4EA, 0x3F82385A} }, /* . */
/* polynomial II */
/* polynomial III */
/**/ e0 = {{0x55554DBD, 0x3FD55555} }, /* . */
/**/ e1 = {{0xE0A6B45F, 0x3FC11112} }, /* . */
/* constants */
/**/ mfftnhf = {{0x00000000, 0xc02f0000} }, /*-15.5 */
/**/ g1 = {{0x00000000, 0x3e4b096c} }, /* 1.259e-8 */
/**/ g2 = {{0x00000000, 0x3faf212d} }, /* 0.0608 */
/**/ g3 = {{0x00000000, 0x3fe92f1a} }, /* 0.787 */
/**/ g4 = {{0x00000000, 0x40390000} }, /* 25.0 */
/**/ g5 = {{0x00000000, 0x4197d784} }, /* 1e8 */
/**/ gy2 = {{0x00000000, 0x3faf212d} }, /* 0.0608 */
/**/ mp1 = {{0x58000000, 0x3FF921FB} },
/**/ mp2 = {{0x3C000000, 0xBE4DDE97} },
/**/ mp3 = {{0x99D747F2, 0xBC8CB3B3} },
/**/ pp3 = {{0x98000000, 0xBC8CB3B3} },
/**/ pp4 = {{0x23e32ed7, 0xbacd747f} },
/**/ hpinv = {{0x6DC9C883, 0x3FE45F30} },
/**/ toint = {{0x00000000, 0x43380000} };
#endif
#endif
#endif
|