1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
/* Compute x * y + z as ternary operation.
Copyright (C) 2010, 2011 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Jakub Jelinek <jakub@redhat.com>, 2010.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <float.h>
#include <math.h>
#include <fenv.h>
#include <ieee754.h>
#include <math_private.h>
/* This implementation uses rounding to odd to avoid problems with
double rounding. See a paper by Boldo and Melquiond:
http://www.lri.fr/~melquion/doc/08-tc.pdf */
double
__fma (double x, double y, double z)
{
union ieee754_double u, v, w;
int adjust = 0;
u.d = x;
v.d = y;
w.d = z;
if (__builtin_expect (u.ieee.exponent + v.ieee.exponent
>= 0x7ff + IEEE754_DOUBLE_BIAS - DBL_MANT_DIG, 0)
|| __builtin_expect (u.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0)
|| __builtin_expect (v.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0)
|| __builtin_expect (w.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0)
|| __builtin_expect (u.ieee.exponent + v.ieee.exponent
<= IEEE754_DOUBLE_BIAS + DBL_MANT_DIG, 0))
{
/* If z is Inf, but x and y are finite, the result should be
z rather than NaN. */
if (w.ieee.exponent == 0x7ff
&& u.ieee.exponent != 0x7ff
&& v.ieee.exponent != 0x7ff)
return (z + x) + y;
/* If x or y or z is Inf/NaN, or if fma will certainly overflow,
or if x * y is less than half of DBL_DENORM_MIN,
compute as x * y + z. */
if (u.ieee.exponent == 0x7ff
|| v.ieee.exponent == 0x7ff
|| w.ieee.exponent == 0x7ff
|| u.ieee.exponent + v.ieee.exponent
> 0x7ff + IEEE754_DOUBLE_BIAS
|| u.ieee.exponent + v.ieee.exponent
< IEEE754_DOUBLE_BIAS - DBL_MANT_DIG - 2)
return x * y + z;
if (u.ieee.exponent + v.ieee.exponent
>= 0x7ff + IEEE754_DOUBLE_BIAS - DBL_MANT_DIG)
{
/* Compute 1p-53 times smaller result and multiply
at the end. */
if (u.ieee.exponent > v.ieee.exponent)
u.ieee.exponent -= DBL_MANT_DIG;
else
v.ieee.exponent -= DBL_MANT_DIG;
/* If x + y exponent is very large and z exponent is very small,
it doesn't matter if we don't adjust it. */
if (w.ieee.exponent > DBL_MANT_DIG)
w.ieee.exponent -= DBL_MANT_DIG;
adjust = 1;
}
else if (w.ieee.exponent >= 0x7ff - DBL_MANT_DIG)
{
/* Similarly.
If z exponent is very large and x and y exponents are
very small, it doesn't matter if we don't adjust it. */
if (u.ieee.exponent > v.ieee.exponent)
{
if (u.ieee.exponent > DBL_MANT_DIG)
u.ieee.exponent -= DBL_MANT_DIG;
}
else if (v.ieee.exponent > DBL_MANT_DIG)
v.ieee.exponent -= DBL_MANT_DIG;
w.ieee.exponent -= DBL_MANT_DIG;
adjust = 1;
}
else if (u.ieee.exponent >= 0x7ff - DBL_MANT_DIG)
{
u.ieee.exponent -= DBL_MANT_DIG;
if (v.ieee.exponent)
v.ieee.exponent += DBL_MANT_DIG;
else
v.d *= 0x1p53;
}
else if (v.ieee.exponent >= 0x7ff - DBL_MANT_DIG)
{
v.ieee.exponent -= DBL_MANT_DIG;
if (u.ieee.exponent)
u.ieee.exponent += DBL_MANT_DIG;
else
u.d *= 0x1p53;
}
else /* if (u.ieee.exponent + v.ieee.exponent
<= IEEE754_DOUBLE_BIAS + DBL_MANT_DIG) */
{
if (u.ieee.exponent > v.ieee.exponent)
u.ieee.exponent += 2 * DBL_MANT_DIG;
else
v.ieee.exponent += 2 * DBL_MANT_DIG;
if (w.ieee.exponent <= 4 * DBL_MANT_DIG + 4)
{
if (w.ieee.exponent)
w.ieee.exponent += 2 * DBL_MANT_DIG;
else
w.d *= 0x1p106;
adjust = -1;
}
/* Otherwise x * y should just affect inexact
and nothing else. */
}
x = u.d;
y = v.d;
z = w.d;
}
/* Multiplication m1 + m2 = x * y using Dekker's algorithm. */
#define C ((1 << (DBL_MANT_DIG + 1) / 2) + 1)
double x1 = x * C;
double y1 = y * C;
double m1 = x * y;
x1 = (x - x1) + x1;
y1 = (y - y1) + y1;
double x2 = x - x1;
double y2 = y - y1;
double m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2;
/* Addition a1 + a2 = z + m1 using Knuth's algorithm. */
double a1 = z + m1;
double t1 = a1 - z;
double t2 = a1 - t1;
t1 = m1 - t1;
t2 = z - t2;
double a2 = t1 + t2;
fenv_t env;
libc_feholdexcept_setround (&env, FE_TOWARDZERO);
/* Perform m2 + a2 addition with round to odd. */
u.d = a2 + m2;
if (__builtin_expect (adjust == 0, 1))
{
if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7ff)
u.ieee.mantissa1 |= libc_fetestexcept (FE_INEXACT) != 0;
libc_feupdateenv (&env);
/* Result is a1 + u.d. */
return a1 + u.d;
}
else if (__builtin_expect (adjust > 0, 1))
{
if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7ff)
u.ieee.mantissa1 |= libc_fetestexcept (FE_INEXACT) != 0;
libc_feupdateenv (&env);
/* Result is a1 + u.d, scaled up. */
return (a1 + u.d) * 0x1p53;
}
else
{
if ((u.ieee.mantissa1 & 1) == 0)
u.ieee.mantissa1 |= libc_fetestexcept (FE_INEXACT) != 0;
v.d = a1 + u.d;
int j = libc_fetestexcept (FE_INEXACT) != 0;
libc_feupdateenv (&env);
/* Ensure the following computations are performed in default rounding
mode instead of just reusing the round to zero computation. */
asm volatile ("" : "=m" (u) : "m" (u));
/* If a1 + u.d is exact, the only rounding happens during
scaling down. */
if (j == 0)
return v.d * 0x1p-106;
/* If result rounded to zero is not subnormal, no double
rounding will occur. */
if (v.ieee.exponent > 106)
return (a1 + u.d) * 0x1p-106;
/* If v.d * 0x1p-106 with round to zero is a subnormal above
or equal to DBL_MIN / 2, then v.d * 0x1p-106 shifts mantissa
down just by 1 bit, which means v.ieee.mantissa1 |= j would
change the round bit, not sticky or guard bit.
v.d * 0x1p-106 never normalizes by shifting up,
so round bit plus sticky bit should be already enough
for proper rounding. */
if (v.ieee.exponent == 106)
{
/* v.ieee.mantissa1 & 2 is LSB bit of the result before rounding,
v.ieee.mantissa1 & 1 is the round bit and j is our sticky
bit. In round-to-nearest 001 rounds down like 00,
011 rounds up, even though 01 rounds down (thus we need
to adjust), 101 rounds down like 10 and 111 rounds up
like 11. */
if ((v.ieee.mantissa1 & 3) == 1)
{
v.d *= 0x1p-106;
if (v.ieee.negative)
return v.d - 0x1p-1074 /* __DBL_DENORM_MIN__ */;
else
return v.d + 0x1p-1074 /* __DBL_DENORM_MIN__ */;
}
else
return v.d * 0x1p-106;
}
v.ieee.mantissa1 |= j;
return v.d * 0x1p-106;
}
}
#ifndef __fma
weak_alias (__fma, fma)
#endif
#ifdef NO_LONG_DOUBLE
strong_alias (__fma, __fmal)
weak_alias (__fmal, fmal)
#endif
|