summary refs log tree commit diff
path: root/sysdeps/ieee754/dbl-64/mpexp.c
blob: 565c6c8531a17130dba888d7c1a53929f9430d5b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/*
 * IBM Accurate Mathematical Library
 * written by International Business Machines Corp.
 * Copyright (C) 2001-2013 Free Software Foundation, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU  Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 */
/*************************************************************************/
/*   MODULE_NAME:mpexp.c                                                 */
/*                                                                       */
/*   FUNCTIONS: mpexp                                                    */
/*                                                                       */
/*   FILES NEEDED: mpa.h endian.h mpexp.h                                */
/*                 mpa.c                                                 */
/*                                                                       */
/* Multi-Precision exponential function subroutine                       */
/*   (  for p >= 4, 2**(-55) <= abs(x) <= 1024     ).                    */
/*************************************************************************/

#include "endian.h"
#include "mpa.h"
#include <assert.h>

#ifndef SECTION
# define SECTION
#endif

/* Multi-Precision exponential function subroutine (for p >= 4,
   2**(-55) <= abs(x) <= 1024).  */
void
SECTION
__mpexp (mp_no *x, mp_no *y, int p)
{
  int i, j, k, m, m1, m2, n;
  double b;
  static const int np[33] =
    {
      0, 0, 0, 0, 3, 3, 4, 4, 5, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6,
      6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8
    };

  static const int m1p[33] =
    {
      0, 0, 0, 0,
      17, 23, 23, 28,
      27, 38, 42, 39,
      43, 47, 43, 47,
      50, 54, 57, 60,
      64, 67, 71, 74,
      68, 71, 74, 77,
      70, 73, 76, 78,
      81
    };
  static const int m1np[7][18] =
    {
      {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
      {0, 0, 0, 0, 36, 48, 60, 72, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
      {0, 0, 0, 0, 24, 32, 40, 48, 56, 64, 72, 0, 0, 0, 0, 0, 0, 0},
      {0, 0, 0, 0, 17, 23, 29, 35, 41, 47, 53, 59, 65, 0, 0, 0, 0, 0},
      {0, 0, 0, 0, 0, 0, 23, 28, 33, 38, 42, 47, 52, 57, 62, 66, 0, 0},
      {0, 0, 0, 0, 0, 0, 0, 0, 27, 0, 0, 39, 43, 47, 51, 55, 59, 63},
      {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 43, 47, 50, 54}
    };
  mp_no mps, mpk, mpt1, mpt2;

  /* Choose m,n and compute a=2**(-m).  */
  n = np[p];
  m1 = m1p[p];
  b = X[1];
  m2 = 24 * EX;
  for (; b < HALFRAD; m2--)
    b *= TWO;
  if (b == HALFRAD)
    {
      for (i = 2; i <= p; i++)
	{
	  if (X[i] != ZERO)
	    break;
	}
      if (i == p + 1)
	m2--;
    }

  m = m1 + m2;
  if (__glibc_unlikely (m <= 0))
    {
      /* The m1np array which is used to determine if we can reduce the
	 polynomial expansion iterations, has only 18 elements.  Besides,
	 numbers smaller than those required by p >= 18 should not come here
	 at all since the fast phase of exp returns 1.0 for anything less
	 than 2^-55.  */
      assert (p < 18);
      m = 0;
      for (i = n - 1; i > 0; i--, n--)
	if (m1np[i][p] + m2 > 0)
	  break;
    }

  /* Compute s=x*2**(-m). Put result in mps.  This is the range-reduced input
     that we will use to compute e^s.  For the final result, simply raise it
     to 2^m.  */
  __pow_mp (-m, &mpt1, p);
  __mul (x, &mpt1, &mps, p);

  /* Compute the Taylor series for e^s:

         1 + x/1! + x^2/2! + x^3/3! ...

     for N iterations.  We compute this as:

         e^x = 1 + (x * n!/1! + x^2 * n!/2! + x^3 * n!/3!) / n!
             = 1 + (x * (n!/1! + x * (n!/2! + x * (n!/3! + x ...)))) / n!

     k! is computed on the fly as KF and at the end of the polynomial loop, KF
     is n!, which can be used directly.  */
  __cpy (&mps, &mpt2, p);

  double kf = 1.0;

  /* Evaluate the rest.  The result will be in mpt2.  */
  for (k = n - 1; k > 0; k--)
    {
      /* n! / k! = n * (n - 1) ... * (n - k + 1) */
      kf *= k + 1;

      __dbl_mp (kf, &mpk, p);
      __add (&mpt2, &mpk, &mpt1, p);
      __mul (&mps, &mpt1, &mpt2, p);
    }
  __dbl_mp (kf, &mpk, p);
  __dvd (&mpt2, &mpk, &mpt1, p);
  __add (&mpone, &mpt1, &mpt2, p);

  /* Raise polynomial value to the power of 2**m. Put result in y.  */
  for (k = 0, j = 0; k < m;)
    {
      __sqr (&mpt2, &mpt1, p);
      k++;
      if (k == m)
	{
	  j = 1;
	  break;
	}
      __sqr (&mpt1, &mpt2, p);
      k++;
    }
  if (j)
    __cpy (&mpt1, y, p);
  else
    __cpy (&mpt2, y, p);
  return;
}