1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
|
/*
* IBM Accurate Mathematical Library
* Written by International Business Machines Corp.
* Copyright (C) 2001, 2011 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/************************************************************************/
/* MODULE_NAME: mpa.h */
/* */
/* FUNCTIONS: */
/* mcr */
/* acr */
/* cr */
/* cpy */
/* cpymn */
/* mp_dbl */
/* dbl_mp */
/* add */
/* sub */
/* mul */
/* inv */
/* dvd */
/* */
/* Arithmetic functions for multiple precision numbers. */
/* Common types and definition */
/************************************************************************/
typedef struct {/* This structure holds the details of a multi-precision */
int e; /* floating point number, x: d[0] holds its sign (-1,0 or 1) */
double d[40]; /* e holds its exponent (...,-2,-1,0,1,2,...) and */
} mp_no; /* d[1]...d[p] hold its mantissa digits. The value of x is, */
/* x = d[1]*r**(e-1) + d[2]*r**(e-2) + ... + d[p]*r**(e-p). */
/* Here r = 2**24, 0 <= d[i] < r and 1 <= p <= 32. */
/* p is a global variable. A multi-precision number is */
/* always normalized. Namely, d[1] > 0. An exception is */
/* a zero which is characterized by d[0] = 0. The terms */
/* d[p+1], d[p+2], ... of a none zero number have no */
/* significance and so are the terms e, d[1],d[2],... */
/* of a zero. */
typedef union { int i[2]; double d; } number;
extern const mp_no mpone;
#define X x->d
#define Y y->d
#define Z z->d
#define EX x->e
#define EY y->e
#define EZ z->e
#define ABS(x) ((x) < 0 ? -(x) : (x))
int __acr(const mp_no *, const mp_no *, int);
// int __cr(const mp_no *, const mp_no *, int);
void __cpy(const mp_no *, mp_no *, int);
// void __cpymn(const mp_no *, int, mp_no *, int);
void __mp_dbl(const mp_no *, double *, int);
void __dbl_mp(double, mp_no *, int);
void __add(const mp_no *, const mp_no *, mp_no *, int);
void __sub(const mp_no *, const mp_no *, mp_no *, int);
void __mul(const mp_no *, const mp_no *, mp_no *, int);
// void __inv(const mp_no *, mp_no *, int);
void __dvd(const mp_no *, const mp_no *, mp_no *, int);
extern void __mpatan (mp_no *, mp_no *, int);
extern void __mpatan2 (mp_no *, mp_no *, mp_no *, int);
extern void __mpsqrt (mp_no *, mp_no *, int);
extern void __mpexp (mp_no *, mp_no *__y, int);
extern void __c32 (mp_no *, mp_no *, mp_no *, int);
extern int __mpranred (double, mp_no *, int);
|