about summary refs log tree commit diff
path: root/sysdeps/ieee754/dbl-64/e_log2.c
blob: 916eb466f8aac5a512fa17ebc8c9eaf5585b6acc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
/* Double-precision log2(x) function.
   Copyright (C) 2018 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <http://www.gnu.org/licenses/>.  */

#include <math.h>
#include <stdint.h>
#include "math_config.h"

#define T __log2_data.tab
#define T2 __log2_data.tab2
#define B __log2_data.poly1
#define A __log2_data.poly
#define InvLn2hi __log2_data.invln2hi
#define InvLn2lo __log2_data.invln2lo
#define N (1 << LOG2_TABLE_BITS)
#define OFF 0x3fe6000000000000

/* Top 16 bits of a double.  */
static inline uint32_t
top16 (double x)
{
  return asuint64 (x) >> 48;
}

double
__ieee754_log2 (double x)
{
  /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
  double_t z, r, r2, r4, y, invc, logc, kd, hi, lo, t1, t2, t3, p;
  uint64_t ix, iz, tmp;
  uint32_t top;
  int k, i;

  ix = asuint64 (x);
  top = top16 (x);

#define LO asuint64 (1.0 - 0x1.5b51p-5)
#define HI asuint64 (1.0 + 0x1.6ab2p-5)
  if (__glibc_unlikely (ix - LO < HI - LO))
    {
      /* Handle close to 1.0 inputs separately.  */
      /* Fix sign of zero with downward rounding when x==1.  */
      if (WANT_ROUNDING && __glibc_unlikely (ix == asuint64 (1.0)))
	return 0;
      r = x - 1.0;
#ifdef __FP_FAST_FMA
      hi = r * InvLn2hi;
      lo = r * InvLn2lo + __builtin_fma (r, InvLn2hi, -hi);
#else
      double_t rhi, rlo;
      rhi = asdouble (asuint64 (r) & -1ULL << 32);
      rlo = r - rhi;
      hi = rhi * InvLn2hi;
      lo = rlo * InvLn2hi + r * InvLn2lo;
#endif
      r2 = r * r; /* rounding error: 0x1p-62.  */
      r4 = r2 * r2;
      /* Worst-case error is less than 0.54 ULP (0.55 ULP without fma).  */
      p = r2 * (B[0] + r * B[1]);
      y = hi + p;
      lo += hi - y + p;
      lo += r4 * (B[2] + r * B[3] + r2 * (B[4] + r * B[5])
		  + r4 * (B[6] + r * B[7] + r2 * (B[8] + r * B[9])));
      y += lo;
      return y;
    }
  if (__glibc_unlikely (top - 0x0010 >= 0x7ff0 - 0x0010))
    {
      /* x < 0x1p-1022 or inf or nan.  */
      if (ix * 2 == 0)
	return __math_divzero (1);
      if (ix == asuint64 (INFINITY)) /* log(inf) == inf.  */
	return x;
      if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0)
	return __math_invalid (x);
      /* x is subnormal, normalize it.  */
      ix = asuint64 (x * 0x1p52);
      ix -= 52ULL << 52;
    }

  /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
     The range is split into N subintervals.
     The ith subinterval contains z and c is near its center.  */
  tmp = ix - OFF;
  i = (tmp >> (52 - LOG2_TABLE_BITS)) % N;
  k = (int64_t) tmp >> 52; /* arithmetic shift */
  iz = ix - (tmp & 0xfffULL << 52);
  invc = T[i].invc;
  logc = T[i].logc;
  z = asdouble (iz);
  kd = (double_t) k;

  /* log2(x) = log2(z/c) + log2(c) + k.  */
  /* r ~= z/c - 1, |r| < 1/(2*N).  */
#ifdef __FP_FAST_FMA
  /* rounding error: 0x1p-55/N.  */
  r = __builtin_fma (z, invc, -1.0);
  t1 = r * InvLn2hi;
  t2 = r * InvLn2lo + __builtin_fma (r, InvLn2hi, -t1);
#else
  double_t rhi, rlo;
  /* rounding error: 0x1p-55/N + 0x1p-65.  */
  r = (z - T2[i].chi - T2[i].clo) * invc;
  rhi = asdouble (asuint64 (r) & -1ULL << 32);
  rlo = r - rhi;
  t1 = rhi * InvLn2hi;
  t2 = rlo * InvLn2hi + r * InvLn2lo;
#endif

  /* hi + lo = r/ln2 + log2(c) + k.  */
  t3 = kd + logc;
  hi = t3 + t1;
  lo = t3 - hi + t1 + t2;

  /* log2(r+1) = r/ln2 + r^2*poly(r).  */
  /* Evaluation is optimized assuming superscalar pipelined execution.  */
  r2 = r * r; /* rounding error: 0x1p-54/N^2.  */
  r4 = r2 * r2;
  /* Worst-case error if |y| > 0x1p-4: 0.547 ULP (0.550 ULP without fma).
     ~ 0.5 + 2/N/ln2 + abs-poly-error*0x1p56 ULP (+ 0.003 ULP without fma).  */
  p = A[0] + r * A[1] + r2 * (A[2] + r * A[3]) + r4 * (A[4] + r * A[5]);
  y = lo + r2 * p + hi;
  return y;
}
#ifndef __ieee754_log2
strong_alias (__ieee754_log2, __log2_finite)
#endif