1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
|
/* Adapted for log2 by Ulrich Drepper <drepper@cygnus.com>. */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_log2(x)
* Return the logarithm to base 2 of x
*
* Method :
* 1. Argument Reduction: find k and f such that
* x = 2^k * (1+f),
* where sqrt(2)/2 < 1+f < sqrt(2) .
*
* 2. Approximation of log(1+f).
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
* = 2s + s*R
* We use a special Reme algorithm on [0,0.1716] to generate
* a polynomial of degree 14 to approximate R The maximum error
* of this polynomial approximation is bounded by 2**-58.45. In
* other words,
* 2 4 6 8 10 12 14
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
* (the values of Lg1 to Lg7 are listed in the program)
* and
* | 2 14 | -58.45
* | Lg1*s +...+Lg7*s - R(z) | <= 2
* | |
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
* In order to guarantee error in log below 1ulp, we compute log
* by
* log(1+f) = f - s*(f - R) (if f is not too large)
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
*
* 3. Finally, log(x) = k + log(1+f).
* = k+(f-(hfsq-(s*(hfsq+R))))
*
* Special cases:
* log2(x) is NaN with signal if x < 0 (including -INF) ;
* log2(+INF) is +INF; log(0) is -INF with signal;
* log2(NaN) is that NaN with no signal.
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include <math.h>
#include <math_private.h>
static const double
ln2 = 0.69314718055994530942,
two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
static const double zero = 0.0;
double
__ieee754_log2(double x)
{
double hfsq,f,s,z,R,w,t1,t2,dk;
int32_t k,hx,i,j;
u_int32_t lx;
EXTRACT_WORDS(hx,lx,x);
k=0;
if (hx < 0x00100000) { /* x < 2**-1022 */
if (__builtin_expect(((hx&0x7fffffff)|lx)==0, 0))
return -two54/(x-x); /* log(+-0)=-inf */
if (__builtin_expect(hx<0, 0))
return (x-x)/(x-x); /* log(-#) = NaN */
k -= 54; x *= two54; /* subnormal number, scale up x */
GET_HIGH_WORD(hx,x);
}
if (__builtin_expect(hx >= 0x7ff00000, 0)) return x+x;
k += (hx>>20)-1023;
hx &= 0x000fffff;
i = (hx+0x95f64)&0x100000;
SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
k += (i>>20);
dk = (double) k;
f = x-1.0;
if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
if(f==zero) return dk;
R = f*f*(0.5-0.33333333333333333*f);
return dk-(R-f)/ln2;
}
s = f/(2.0+f);
z = s*s;
i = hx-0x6147a;
w = z*z;
j = 0x6b851-hx;
t1= w*(Lg2+w*(Lg4+w*Lg6));
t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
i |= j;
R = t2+t1;
if(i>0) {
hfsq=0.5*f*f;
return dk-((hfsq-(s*(hfsq+R)))-f)/ln2;
} else {
return dk-((s*(f-R))-f)/ln2;
}
}
strong_alias (__ieee754_log2, __log2_finite)
|