about summary refs log tree commit diff
path: root/sysdeps/ieee754/dbl-64/e_exp2.c
blob: 5fdf038fb0d7c74e6a3a17b591016125466a2001 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
/* Double-precision 2^x function.
   Copyright (C) 2018-2020 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <https://www.gnu.org/licenses/>.  */

#include <math.h>
#include <stdint.h>
#include <math-barriers.h>
#include <math-narrow-eval.h>
#include <math-svid-compat.h>
#include <libm-alias-finite.h>
#include <libm-alias-double.h>
#include "math_config.h"

#define N (1 << EXP_TABLE_BITS)
#define Shift __exp_data.exp2_shift
#define T __exp_data.tab
#define C1 __exp_data.exp2_poly[0]
#define C2 __exp_data.exp2_poly[1]
#define C3 __exp_data.exp2_poly[2]
#define C4 __exp_data.exp2_poly[3]
#define C5 __exp_data.exp2_poly[4]

/* Handle cases that may overflow or underflow when computing the result that
   is scale*(1+TMP) without intermediate rounding.  The bit representation of
   scale is in SBITS, however it has a computed exponent that may have
   overflown into the sign bit so that needs to be adjusted before using it as
   a double.  (int32_t)KI is the k used in the argument reduction and exponent
   adjustment of scale, positive k here means the result may overflow and
   negative k means the result may underflow.  */
static inline double
specialcase (double_t tmp, uint64_t sbits, uint64_t ki)
{
  double_t scale, y;

  if ((ki & 0x80000000) == 0)
    {
      /* k > 0, the exponent of scale might have overflowed by 1.  */
      sbits -= 1ull << 52;
      scale = asdouble (sbits);
      y = 2 * (scale + scale * tmp);
      return check_oflow (y);
    }
  /* k < 0, need special care in the subnormal range.  */
  sbits += 1022ull << 52;
  scale = asdouble (sbits);
  y = scale + scale * tmp;
  if (y < 1.0)
    {
      /* Round y to the right precision before scaling it into the subnormal
	 range to avoid double rounding that can cause 0.5+E/2 ulp error where
	 E is the worst-case ulp error outside the subnormal range.  So this
	 is only useful if the goal is better than 1 ulp worst-case error.  */
      double_t hi, lo;
      lo = scale - y + scale * tmp;
      hi = 1.0 + y;
      lo = 1.0 - hi + y + lo;
      y = math_narrow_eval (hi + lo) - 1.0;
      /* Avoid -0.0 with downward rounding.  */
      if (WANT_ROUNDING && y == 0.0)
	y = 0.0;
      /* The underflow exception needs to be signaled explicitly.  */
      math_force_eval (math_opt_barrier (0x1p-1022) * 0x1p-1022);
    }
  y = 0x1p-1022 * y;
  return check_uflow (y);
}

/* Top 12 bits of a double (sign and exponent bits).  */
static inline uint32_t
top12 (double x)
{
  return asuint64 (x) >> 52;
}

double
__exp2 (double x)
{
  uint32_t abstop;
  uint64_t ki, idx, top, sbits;
  /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
  double_t kd, r, r2, scale, tail, tmp;

  abstop = top12 (x) & 0x7ff;
  if (__glibc_unlikely (abstop - top12 (0x1p-54)
			>= top12 (512.0) - top12 (0x1p-54)))
    {
      if (abstop - top12 (0x1p-54) >= 0x80000000)
	/* Avoid spurious underflow for tiny x.  */
	/* Note: 0 is common input.  */
	return WANT_ROUNDING ? 1.0 + x : 1.0;
      if (abstop >= top12 (1024.0))
	{
	  if (asuint64 (x) == asuint64 (-INFINITY))
	    return 0.0;
	  if (abstop >= top12 (INFINITY))
	    return 1.0 + x;
	  if (!(asuint64 (x) >> 63))
	    return __math_oflow (0);
	  else if (asuint64 (x) >= asuint64 (-1075.0))
	    return __math_uflow (0);
	}
      if (2 * asuint64 (x) > 2 * asuint64 (928.0))
	/* Large x is special cased below.  */
	abstop = 0;
    }

  /* exp2(x) = 2^(k/N) * 2^r, with 2^r in [2^(-1/2N),2^(1/2N)].  */
  /* x = k/N + r, with int k and r in [-1/2N, 1/2N].  */
  kd = math_narrow_eval (x + Shift);
  ki = asuint64 (kd); /* k.  */
  kd -= Shift; /* k/N for int k.  */
  r = x - kd;
  /* 2^(k/N) ~= scale * (1 + tail).  */
  idx = 2 * (ki % N);
  top = ki << (52 - EXP_TABLE_BITS);
  tail = asdouble (T[idx]);
  /* This is only a valid scale when -1023*N < k < 1024*N.  */
  sbits = T[idx + 1] + top;
  /* exp2(x) = 2^(k/N) * 2^r ~= scale + scale * (tail + 2^r - 1).  */
  /* Evaluation is optimized assuming superscalar pipelined execution.  */
  r2 = r * r;
  /* Without fma the worst case error is 0.5/N ulp larger.  */
  /* Worst case error is less than 0.5+0.86/N+(abs poly error * 2^53) ulp.  */
  tmp = tail + r * C1 + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
  if (__glibc_unlikely (abstop == 0))
    return specialcase (tmp, sbits, ki);
  scale = asdouble (sbits);
  /* Note: tmp == 0 or |tmp| > 2^-65 and scale > 2^-928, so there
     is no spurious underflow here even without fma.  */
  return scale + scale * tmp;
}
#ifndef __exp2
strong_alias (__exp2, __ieee754_exp2)
libm_alias_finite (__ieee754_exp2, __exp2)
# if LIBM_SVID_COMPAT
versioned_symbol (libm, __exp2, exp2, GLIBC_2_29);
libm_alias_double_other (__exp2, exp2)
# else
libm_alias_double (__exp2, exp2)
# endif
#endif