1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
/* Copyright (C) 2012-2024 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <math.h>
#include <math-barriers.h>
#include <math-narrow-eval.h>
#include <math-svid-compat.h>
#include <libm-alias-finite.h>
#include <libm-alias-double.h>
#include "math_config.h"
#define N (1 << EXP_TABLE_BITS)
#define IndexMask (N - 1)
#define OFlowBound 0x1.34413509f79ffp8 /* log10(DBL_MAX). */
#define UFlowBound -0x1.5ep+8 /* -350. */
#define SmallTop 0x3c6 /* top12(0x1p-57). */
#define BigTop 0x407 /* top12(0x1p8). */
#define Thresh 0x41 /* BigTop - SmallTop. */
#define Shift __exp_data.shift
#define C(i) __exp_data.exp10_poly[i]
static double
special_case (uint64_t sbits, double_t tmp, uint64_t ki)
{
double_t scale, y;
if ((ki & 0x80000000) == 0)
{
/* The exponent of scale might have overflowed by 1. */
sbits -= 1ull << 52;
scale = asdouble (sbits);
y = 2 * (scale + scale * tmp);
return check_oflow (y);
}
/* n < 0, need special care in the subnormal range. */
sbits += 1022ull << 52;
scale = asdouble (sbits);
y = scale + scale * tmp;
if (y < 1.0)
{
/* Round y to the right precision before scaling it into the subnormal
range to avoid double rounding that can cause 0.5+E/2 ulp error where
E is the worst-case ulp error outside the subnormal range. So this
is only useful if the goal is better than 1 ulp worst-case error. */
double_t lo = scale - y + scale * tmp;
double_t hi = 1.0 + y;
lo = 1.0 - hi + y + lo;
y = math_narrow_eval (hi + lo) - 1.0;
/* Avoid -0.0 with downward rounding. */
if (WANT_ROUNDING && y == 0.0)
y = 0.0;
/* The underflow exception needs to be signaled explicitly. */
math_force_eval (math_opt_barrier (0x1p-1022) * 0x1p-1022);
}
y = 0x1p-1022 * y;
return check_uflow (y);
}
/* Double-precision 10^x approximation. Largest observed error is ~0.513 ULP. */
double
__exp10 (double x)
{
uint64_t ix = asuint64 (x);
uint32_t abstop = (ix >> 52) & 0x7ff;
if (__glibc_unlikely (abstop - SmallTop >= Thresh))
{
if (abstop - SmallTop >= 0x80000000)
/* Avoid spurious underflow for tiny x.
Note: 0 is common input. */
return x + 1;
if (abstop == 0x7ff)
return ix == asuint64 (-INFINITY) ? 0.0 : x + 1.0;
if (x >= OFlowBound)
return __math_oflow (0);
if (x < UFlowBound)
return __math_uflow (0);
/* Large x is special-cased below. */
abstop = 0;
}
/* Reduce x: z = x * N / log10(2), k = round(z). */
double_t z = __exp_data.invlog10_2N * x;
double_t kd;
uint64_t ki;
#if TOINT_INTRINSICS
kd = roundtoint (z);
ki = converttoint (z);
#else
kd = math_narrow_eval (z + Shift);
ki = asuint64 (kd);
kd -= Shift;
#endif
/* r = x - k * log10(2), r in [-0.5, 0.5]. */
double_t r = x;
r = __exp_data.neglog10_2hiN * kd + r;
r = __exp_data.neglog10_2loN * kd + r;
/* exp10(x) = 2^(k/N) * 2^(r/N).
Approximate the two components separately. */
/* s = 2^(k/N), using lookup table. */
uint64_t e = ki << (52 - EXP_TABLE_BITS);
uint64_t i = (ki & IndexMask) * 2;
uint64_t u = __exp_data.tab[i + 1];
uint64_t sbits = u + e;
double_t tail = asdouble (__exp_data.tab[i]);
/* 2^(r/N) ~= 1 + r * Poly(r). */
double_t r2 = r * r;
double_t p = C (0) + r * C (1);
double_t y = C (2) + r * C (3);
y = y + r2 * C (4);
y = p + r2 * y;
y = tail + y * r;
if (__glibc_unlikely (abstop == 0))
return special_case (sbits, y, ki);
/* Assemble components:
y = 2^(r/N) * 2^(k/N)
~= (y + 1) * s. */
double_t s = asdouble (sbits);
return s * y + s;
}
strong_alias (__exp10, __ieee754_exp10)
libm_alias_finite (__ieee754_exp10, __exp10)
#if LIBM_SVID_COMPAT
versioned_symbol (libm, __exp10, exp10, GLIBC_2_39);
libm_alias_double_other (__exp10, exp10)
#else
libm_alias_double (__exp10, exp10)
#endif
|