1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
|
.file "tgamma.s"
// Copyright (c) 2001 - 2005, Intel Corporation
// All rights reserved.
//
// Contributed 2001 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,INCLUDING,BUT NOT
// LIMITED TO,THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT,INDIRECT,INCIDENTAL,SPECIAL,
// EXEMPLARY,OR CONSEQUENTIAL DAMAGES (INCLUDING,BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,DATA,OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY,WHETHER IN CONTRACT,STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE,EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code,and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
//*********************************************************************
//
// History:
// 10/12/01 Initial version
// 05/20/02 Cleaned up namespace and sf0 syntax
// 02/10/03 Reordered header: .section, .global, .proc, .align
// 04/04/03 Changed error codes for overflow and negative integers
// 04/10/03 Changed code for overflow near zero handling
// 03/31/05 Reformatted delimiters between data tables
//
//*********************************************************************
//
//*********************************************************************
//
// Function: tgamma(x) computes the principle value of the GAMMA
// function of x.
//
//*********************************************************************
//
// Resources Used:
//
// Floating-Point Registers: f8-f15
// f33-f87
//
// General Purpose Registers:
// r8-r11
// r14-r28
// r32-r36
// r37-r40 (Used to pass arguments to error handling routine)
//
// Predicate Registers: p6-p15
//
//*********************************************************************
//
// IEEE Special Conditions:
//
// tgamma(+inf) = +inf
// tgamma(-inf) = QNaN
// tgamma(+/-0) = +/-inf
// tgamma(x<0, x - integer) = QNaN
// tgamma(SNaN) = QNaN
// tgamma(QNaN) = QNaN
//
//*********************************************************************
//
// Overview
//
// The method consists of three cases.
//
// If 2 <= x < OVERFLOW_BOUNDARY use case tgamma_regular;
// else if 0 < x < 2 use case tgamma_from_0_to_2;
// else if -(i+1) < x < -i, i = 0...184 use case tgamma_negatives;
//
// Case 2 <= x < OVERFLOW_BOUNDARY
// -------------------------------
// Here we use algorithm based on the recursive formula
// GAMMA(x+1) = x*GAMMA(x). For that we subdivide interval
// [2; OVERFLOW_BOUNDARY] into intervals [16*n; 16*(n+1)] and
// approximate GAMMA(x) by polynomial of 22th degree on each
// [16*n; 16*n+1], recursive formula is used to expand GAMMA(x)
// to [16*n; 16*n+1]. In other words we need to find n, i and r
// such that x = 16 * n + i + r where n and i are integer numbers
// and r is fractional part of x. So GAMMA(x) = GAMMA(16*n+i+r) =
// = (x-1)*(x-2)*...*(x-i)*GAMMA(x-i) =
// = (x-1)*(x-2)*...*(x-i)*GAMMA(16*n+r) ~
// ~ (x-1)*(x-2)*...*(x-i)*P22n(r).
//
// Step 1: Reduction
// -----------------
// N = [x] with truncate
// r = x - N, note 0 <= r < 1
//
// n = N & ~0xF - index of table that contains coefficient of
// polynomial approximation
// i = N & 0xF - is used in recursive formula
//
//
// Step 2: Approximation
// ---------------------
// We use factorized minimax approximation polynomials
// P22n(r) = A22*(r^2+C01(n)*R+C00(n))*
// *(r^2+C11(n)*R+C10(n))*...*(r^2+CA1(n)*R+CA0(n))
//
// Step 3: Recursion
// -----------------
// In case when i > 0 we need to multiply P22n(r) by product
// R(i)=(x-1)*(x-2)*...*(x-i). To reduce number of fp-instructions
// we can calculate R as follow:
// R(i) = ((x-1)*(x-2))*((x-3)*(x-4))*...*((x-(i-1))*(x-i)) if i is
// even or R = ((x-1)*(x-2))*((x-3)*(x-4))*...*((x-(i-2))*(x-(i-1)))*
// *(i-1) if i is odd. In both cases we need to calculate
// R2(i) = (x^2-3*x+2)*(x^2-7*x+12)*...*(x^2+x+2*j*(2*j-1)) =
// = (x^2-3*x+2)*(x^2-7*x+12)*...*((x^2+x)+2*j*(2*(j-1)+(1-2*x))) =
// = (RA+2*(2-RB))*(RA+4*(4-RB))*...*(RA+2*j*(2*(j-1)+RB))
// where j = 1..[i/2], RA = x^2+x, RB = 1-2*x.
//
// Step 4: Reconstruction
// ----------------------
// Reconstruction is just simple multiplication i.e.
// GAMMA(x) = P22n(r)*R(i)
//
// Case 0 < x < 2
// --------------
// To calculate GAMMA(x) on this interval we do following
// if 1 <= x < 1.25 than GAMMA(x) = P15(x-1)
// if 1.25 <= x < 1.5 than GAMMA(x) = P15(x-x_min) where
// x_min is point of local minimum on [1; 2] interval.
// if 1.5 <= x < 2.0 than GAMMA(x) = P15(x-1.5)
// and
// if 0 < x < 1 than GAMMA(x) = GAMMA(x+1)/x
//
// Case -(i+1) < x < -i, i = 0...184
// ----------------------------------
// Here we use the fact that GAMMA(-x) = PI/(x*GAMMA(x)*sin(PI*x)) and
// so we need to calculate GAMMA(x), sin(PI*x)/PI. Calculation of
// GAMMA(x) is described above.
//
// Step 1: Reduction
// -----------------
// Note that period of sin(PI*x) is 2 and range reduction for
// sin(PI*x) is like to range reduction for GAMMA(x)
// i.e r = x - [x] with exception of cases
// when r > 0.5 (in such cases r = 1 - (x - [x])).
//
// Step 2: Approximation
// ---------------------
// To approximate sin(PI*x)/PI = sin(PI*(2*n+r))/PI =
// = (-1)^n*sin(PI*r)/PI Taylor series is used.
// sin(PI*r)/PI ~ S21(r).
//
// Step 3: Division
// ----------------
// To calculate 1/(x*GAMMA(x)*S21(r)) we use frcpa instruction
// with following Newton-Raphson interations.
//
//
//*********************************************************************
GR_Sig = r8
GR_TAG = r8
GR_ad_Data = r9
GR_SigRqLin = r10
GR_iSig = r11
GR_ExpOf1 = r11
GR_ExpOf8 = r11
GR_Sig2 = r14
GR_Addr_Mask1 = r15
GR_Sign_Exp = r16
GR_Tbl_Offs = r17
GR_Addr_Mask2 = r18
GR_ad_Co = r19
GR_Bit2 = r19
GR_ad_Ce = r20
GR_ad_Co7 = r21
GR_NzOvfBound = r21
GR_ad_Ce7 = r22
GR_Tbl_Ind = r23
GR_Tbl_16xInd = r24
GR_ExpOf025 = r24
GR_ExpOf05 = r25
GR_0x30033 = r26
GR_10 = r26
GR_12 = r27
GR_185 = r27
GR_14 = r28
GR_2 = r28
GR_fpsr = r28
GR_SAVE_B0 = r33
GR_SAVE_PFS = r34
GR_SAVE_GP = r35
GR_SAVE_SP = r36
GR_Parameter_X = r37
GR_Parameter_Y = r38
GR_Parameter_RESULT = r39
GR_Parameter_TAG = r40
FR_X = f10
FR_Y = f1 // tgamma is single argument function
FR_RESULT = f8
FR_AbsX = f9
FR_NormX = f9
FR_r02 = f11
FR_AbsXp1 = f12
FR_X2pX = f13
FR_1m2X = f14
FR_Rq1 = f14
FR_Xt = f15
FR_r = f33
FR_OvfBound = f34
FR_Xmin = f35
FR_2 = f36
FR_Rcp1 = f36
FR_Rcp3 = f36
FR_4 = f37
FR_5 = f38
FR_6 = f39
FR_8 = f40
FR_10 = f41
FR_12 = f42
FR_14 = f43
FR_GAMMA = f43
FR_05 = f44
FR_Rq2 = f45
FR_Rq3 = f46
FR_Rq4 = f47
FR_Rq5 = f48
FR_Rq6 = f49
FR_Rq7 = f50
FR_RqLin = f51
FR_InvAn = f52
FR_C01 = f53
FR_A15 = f53
FR_C11 = f54
FR_A14 = f54
FR_C21 = f55
FR_A13 = f55
FR_C31 = f56
FR_A12 = f56
FR_C41 = f57
FR_A11 = f57
FR_C51 = f58
FR_A10 = f58
FR_C61 = f59
FR_A9 = f59
FR_C71 = f60
FR_A8 = f60
FR_C81 = f61
FR_A7 = f61
FR_C91 = f62
FR_A6 = f62
FR_CA1 = f63
FR_A5 = f63
FR_C00 = f64
FR_A4 = f64
FR_rs2 = f64
FR_C10 = f65
FR_A3 = f65
FR_rs3 = f65
FR_C20 = f66
FR_A2 = f66
FR_rs4 = f66
FR_C30 = f67
FR_A1 = f67
FR_rs7 = f67
FR_C40 = f68
FR_A0 = f68
FR_rs8 = f68
FR_C50 = f69
FR_r2 = f69
FR_C60 = f70
FR_r3 = f70
FR_C70 = f71
FR_r4 = f71
FR_C80 = f72
FR_r7 = f72
FR_C90 = f73
FR_r8 = f73
FR_CA0 = f74
FR_An = f75
FR_S21 = f76
FR_S19 = f77
FR_Rcp0 = f77
FR_Rcp2 = f77
FR_S17 = f78
FR_S15 = f79
FR_S13 = f80
FR_S11 = f81
FR_S9 = f82
FR_S7 = f83
FR_S5 = f84
FR_S3 = f85
FR_iXt = f86
FR_rs = f87
// Data tables
//==============================================================
RODATA
.align 16
LOCAL_OBJECT_START(tgamma_data)
data8 0x406573FAE561F648 // overflow boundary (171.624376956302739927196)
data8 0x3FDD8B618D5AF8FE // point of local minium (0.461632144968362356785)
//
//[2; 3]
data8 0xEF0E85C9AE40ABE2,0x00004000 // C01
data8 0xCA2049DDB4096DD8,0x00004000 // C11
data8 0x99A203B4DC2D1A8C,0x00004000 // C21
data8 0xBF5D9D9C0C295570,0x00003FFF // C31
data8 0xE8DD037DEB833BAB,0x00003FFD // C41
data8 0xB6AE39A2A36AA03A,0x0000BFFE // C51
data8 0x804960DC2850277B,0x0000C000 // C61
data8 0xD9F3973841C09F80,0x0000C000 // C71
data8 0x9C198A676F8A2239,0x0000C001 // C81
data8 0xC98B7DAE02BE3226,0x0000C001 // C91
data8 0xE9CAF31AC69301BA,0x0000C001 // CA1
data8 0xFBBDD58608A0D172,0x00004000 // C00
data8 0xFDD0316D1E078301,0x00004000 // C10
data8 0x8630B760468C15E4,0x00004001 // C20
data8 0x93EDE20E47D9152E,0x00004001 // C30
data8 0xA86F3A38C77D6B19,0x00004001 // C40
//[16; 17]
data8 0xF87F757F365EE813,0x00004000 // C01
data8 0xECA84FBA92759DA4,0x00004000 // C11
data8 0xD4E0A55E07A8E913,0x00004000 // C21
data8 0xB0EB45E94C8A5F7B,0x00004000 // C31
data8 0x8050D6B4F7C8617D,0x00004000 // C41
data8 0x8471B111AA691E5A,0x00003FFF // C51
data8 0xADAF462AF96585C9,0x0000BFFC // C61
data8 0xD327C7A587A8C32B,0x0000BFFF // C71
data8 0xDEF5192B4CF5E0F1,0x0000C000 // C81
data8 0xBADD64BB205AEF02,0x0000C001 // C91
data8 0x9330A24AA67D6860,0x0000C002 // CA1
data8 0xF57EEAF36D8C47BE,0x00004000 // C00
data8 0x807092E12A251B38,0x00004001 // C10
data8 0x8C458F80DEE7ED1C,0x00004001 // C20
data8 0x9F30C731DC77F1A6,0x00004001 // C30
data8 0xBAC4E7E099C3A373,0x00004001 // C40
//[32; 33]
data8 0xC3059A415F142DEF,0x00004000 // C01
data8 0xB9C1DAC24664587A,0x00004000 // C11
data8 0xA7101D910992FFB2,0x00004000 // C21
data8 0x8A9522B8E4AA0AB4,0x00004000 // C31
data8 0xC76A271E4BA95DCC,0x00003FFF // C41
data8 0xC5D6DE2A38DB7FF2,0x00003FFE // C51
data8 0xDBA42086997818B2,0x0000BFFC // C61
data8 0xB8EDDB1424C1C996,0x0000BFFF // C71
data8 0xBF7372FB45524B5D,0x0000C000 // C81
data8 0xA03DDE759131580A,0x0000C001 // C91
data8 0xFDA6FC4022C1FFE3,0x0000C001 // CA1
data8 0x9759ABF797B2533D,0x00004000 // C00
data8 0x9FA160C6CF18CEC5,0x00004000 // C10
data8 0xB0EFF1E3530E0FCD,0x00004000 // C20
data8 0xCCD60D5C470165D1,0x00004000 // C30
data8 0xF5E53F6307B0B1C1,0x00004000 // C40
//[48; 49]
data8 0xAABE577FBCE37F5E,0x00004000 // C01
data8 0xA274CAEEB5DF7172,0x00004000 // C11
data8 0x91B90B6646C1B924,0x00004000 // C21
data8 0xF06718519CA256D9,0x00003FFF // C31
data8 0xAA9EE181C0E30263,0x00003FFF // C41
data8 0xA07BDB5325CB28D2,0x00003FFE // C51
data8 0x86C8B873204F9219,0x0000BFFD // C61
data8 0xB0192C5D3E4787D6,0x0000BFFF // C71
data8 0xB1E0A6263D4C19EF,0x0000C000 // C81
data8 0x93BA32A118EAC9AE,0x0000C001 // C91
data8 0xE942A39CD9BEE887,0x0000C001 // CA1
data8 0xE838B0957B0D3D0D,0x00003FFF // C00
data8 0xF60E0F00074FCF34,0x00003FFF // C10
data8 0x89869936AE00C2A5,0x00004000 // C20
data8 0xA0FE4E8AA611207F,0x00004000 // C30
data8 0xC3B1229CFF1DDAFE,0x00004000 // C40
//[64; 65]
data8 0x9C00DDF75CDC6183,0x00004000 // C01
data8 0x9446AE9C0F6A833E,0x00004000 // C11
data8 0x84ABC5083310B774,0x00004000 // C21
data8 0xD9BA3A0977B1ED83,0x00003FFF // C31
data8 0x989B18C99411D300,0x00003FFF // C41
data8 0x886E66402318CE6F,0x00003FFE // C51
data8 0x99028C2468F18F38,0x0000BFFD // C61
data8 0xAB72D17DCD40CCE1,0x0000BFFF // C71
data8 0xA9D9AC9BE42C2EF9,0x0000C000 // C81
data8 0x8C11D983AA177AD2,0x0000C001 // C91
data8 0xDC779E981C1F0F06,0x0000C001 // CA1
data8 0xC1FD4AC85965E8D6,0x00003FFF // C00
data8 0xCE3D2D909D389EC2,0x00003FFF // C10
data8 0xE7F79980AD06F5D8,0x00003FFF // C20
data8 0x88DD9F73C8680B5D,0x00004000 // C30
data8 0xA7D6CB2CB2D46F9D,0x00004000 // C40
//[80; 81]
data8 0x91C7FF4E993430D0,0x00004000 // C01
data8 0x8A6E7AB83E45A7E9,0x00004000 // C11
data8 0xF72D6382E427BEA9,0x00003FFF // C21
data8 0xC9E2E4F9B3B23ED6,0x00003FFF // C31
data8 0x8BEFEF56AE05D775,0x00003FFF // C41
data8 0xEE9666AB6A185560,0x00003FFD // C51
data8 0xA6AFAF5CEFAEE04D,0x0000BFFD // C61
data8 0xA877EAFEF1F9C880,0x0000BFFF // C71
data8 0xA45BD433048ECA15,0x0000C000 // C81
data8 0x86BD1636B774CC2E,0x0000C001 // C91
data8 0xD3721BE006E10823,0x0000C001 // CA1
data8 0xA97EFABA91854208,0x00003FFF // C00
data8 0xB4AF0AEBB3F97737,0x00003FFF // C10
data8 0xCC38241936851B0B,0x00003FFF // C20
data8 0xF282A6261006EA84,0x00003FFF // C30
data8 0x95B8E9DB1BD45BAF,0x00004000 // C40
//[96; 97]
data8 0x8A1FA3171B35A106,0x00004000 // C01
data8 0x830D5B8843890F21,0x00004000 // C11
data8 0xE98B0F1616677A23,0x00003FFF // C21
data8 0xBDF8347F5F67D4EC,0x00003FFF // C31
data8 0x825F15DE34EC055D,0x00003FFF // C41
data8 0xD4846186B8AAC7BE,0x00003FFD // C51
data8 0xB161093AB14919B1,0x0000BFFD // C61
data8 0xA65758EEA4800EF4,0x0000BFFF // C71
data8 0xA046B67536FA329C,0x0000C000 // C81
data8 0x82BBEC1BCB9E9068,0x0000C001 // C91
data8 0xCC9DE2B23BA91B0B,0x0000C001 // CA1
data8 0x983B16148AF77F94,0x00003FFF // C00
data8 0xA2A4D8EE90FEE5DD,0x00003FFF // C10
data8 0xB89446FA37FF481C,0x00003FFF // C20
data8 0xDC5572648485FB01,0x00003FFF // C30
data8 0x88CD5D7DB976129A,0x00004000 // C40
//[112; 113]
data8 0x8417098FD62AC5E3,0x00004000 // C01
data8 0xFA7896486B779CBB,0x00003FFF // C11
data8 0xDEC98B14AF5EEBD1,0x00003FFF // C21
data8 0xB48E153C6BF0B5A3,0x00003FFF // C31
data8 0xF597B038BC957582,0x00003FFE // C41
data8 0xBFC6F0884A415694,0x00003FFD // C51
data8 0xBA075A1392BDB5E5,0x0000BFFD // C61
data8 0xA4B79E01B44C7DB4,0x0000BFFF // C71
data8 0x9D12FA7711BFAB0F,0x0000C000 // C81
data8 0xFF24C47C8E108AB4,0x0000C000 // C91
data8 0xC7325EC86562606A,0x0000C001 // CA1
data8 0x8B47DCD9E1610938,0x00003FFF // C00
data8 0x9518B111B70F88B8,0x00003FFF // C10
data8 0xA9CC197206F68682,0x00003FFF // C20
data8 0xCB98294CC0D7A6A6,0x00003FFF // C30
data8 0xFE09493EA9165181,0x00003FFF // C40
//[128; 129]
data8 0xFE53D03442270D90,0x00003FFF // C01
data8 0xF0F857BAEC1993E4,0x00003FFF // C11
data8 0xD5FF6D70DBBC2FD3,0x00003FFF // C21
data8 0xACDAA5F4988B1074,0x00003FFF // C31
data8 0xE92E069F8AD75B54,0x00003FFE // C41
data8 0xAEBB64645BD94234,0x00003FFD // C51
data8 0xC13746249F39B43C,0x0000BFFD // C61
data8 0xA36B74F5B6297A1F,0x0000BFFF // C71
data8 0x9A77860DF180F6E5,0x0000C000 // C81
data8 0xF9F8457D84410A0C,0x0000C000 // C91
data8 0xC2BF44C649EB8597,0x0000C001 // CA1
data8 0x81225E7489BCDC0E,0x00003FFF // C00
data8 0x8A788A09CE0EED11,0x00003FFF // C10
data8 0x9E2E6F86D1B1D89C,0x00003FFF // C20
data8 0xBE6866B21CF6CCB5,0x00003FFF // C30
data8 0xEE94426EC1486AAE,0x00003FFF // C40
//[144; 145]
data8 0xF6113E09732A6497,0x00003FFF // C01
data8 0xE900D45931B04FC8,0x00003FFF // C11
data8 0xCE9FD58F745EBA5D,0x00003FFF // C21
data8 0xA663A9636C864C86,0x00003FFF // C31
data8 0xDEBF5315896CE629,0x00003FFE // C41
data8 0xA05FEA415EBD7737,0x00003FFD // C51
data8 0xC750F112BD9C4031,0x0000BFFD // C61
data8 0xA2593A35C51C6F6C,0x0000BFFF // C71
data8 0x9848E1DA7FB40C8C,0x0000C000 // C81
data8 0xF59FEE87A5759A4B,0x0000C000 // C91
data8 0xBF00203909E45A1D,0x0000C001 // CA1
data8 0xF1D8E157200127E5,0x00003FFE // C00
data8 0x81DD5397CB08D487,0x00003FFF // C10
data8 0x94C1DC271A8B766F,0x00003FFF // C20
data8 0xB3AFAF9B5D6EDDCF,0x00003FFF // C30
data8 0xE1FB4C57CA81BE1E,0x00003FFF // C40
//[160; 161]
data8 0xEEFFE5122AC72FFD,0x00003FFF // C01
data8 0xE22F70BB52AD54B3,0x00003FFF // C11
data8 0xC84FF021FE993EEA,0x00003FFF // C21
data8 0xA0DA2208EB5B2752,0x00003FFF // C31
data8 0xD5CDD2FCF8AD2DF5,0x00003FFE // C41
data8 0x940BEC6DCD811A59,0x00003FFD // C51
data8 0xCC954EF4FD4EBB81,0x0000BFFD // C61
data8 0xA1712E29A8C04554,0x0000BFFF // C71
data8 0x966B55DFB243521A,0x0000C000 // C81
data8 0xF1E6A2B9CEDD0C4C,0x0000C000 // C91
data8 0xBBC87BCC031012DB,0x0000C001 // CA1
data8 0xE43974E6D2818583,0x00003FFE // C00
data8 0xF5702A516B64C5B7,0x00003FFE // C10
data8 0x8CEBCB1B32E19471,0x00003FFF // C20
data8 0xAAC10F05BB77E0AF,0x00003FFF // C30
data8 0xD776EFCAB205CC58,0x00003FFF // C40
//[176; 177]
data8 0xE8DA614119811E5D,0x00003FFF // C01
data8 0xDC415E0288B223D8,0x00003FFF // C11
data8 0xC2D2243E44EC970E,0x00003FFF // C21
data8 0x9C086664B5307BEA,0x00003FFF // C31
data8 0xCE03D7A08B461156,0x00003FFE // C41
data8 0x894BE3BAAAB66ADC,0x00003FFD // C51
data8 0xD131EDD71A702D4D,0x0000BFFD // C61
data8 0xA0A907CDDBE10898,0x0000BFFF // C71
data8 0x94CC3CD9C765C808,0x0000C000 // C81
data8 0xEEA85F237815FC0D,0x0000C000 // C91
data8 0xB8FA04B023E43F91,0x0000C001 // CA1
data8 0xD8B2C7D9FCBD7EF9,0x00003FFE // C00
data8 0xE9566E93AAE7E38F,0x00003FFE // C10
data8 0x8646E78AABEF0255,0x00003FFF // C20
data8 0xA32AEDB62E304345,0x00003FFF // C30
data8 0xCE83E40280EE7DF0,0x00003FFF // C40
//
//[2; 3]
data8 0xC44FB47E90584083,0x00004001 // C50
data8 0xE863EE77E1C45981,0x00004001 // C60
data8 0x8AC15BE238B9D70E,0x00004002 // C70
data8 0xA5D94B6592350EF4,0x00004002 // C80
data8 0xC379DB3E20A148B3,0x00004002 // C90
data8 0xDACA49B73974F6C9,0x00004002 // CA0
data8 0x810E496A1AFEC895,0x00003FE1 // An
//[16; 17]
data8 0xE17C0357AAF3F817,0x00004001 // C50
data8 0x8BA8804750FBFBFE,0x00004002 // C60
data8 0xB18EAB3CB64BEBEE,0x00004002 // C70
data8 0xE90AB7015AF1C28F,0x00004002 // C80
data8 0xA0AB97CE9E259196,0x00004003 // C90
data8 0xF5E0E0A000C2D720,0x00004003 // CA0
data8 0xD97F0F87EC791954,0x00004005 // An
//[32; 33]
data8 0x980C293F3696040D,0x00004001 // C50
data8 0xC0DBFFBB948A9A4E,0x00004001 // C60
data8 0xFAB54625E9A588A2,0x00004001 // C70
data8 0xA7E08176D6050FBF,0x00004002 // C80
data8 0xEBAAEC4952270A9F,0x00004002 // C90
data8 0xB7479CDAD20550FE,0x00004003 // CA0
data8 0xAACD45931C3FF634,0x00004054 // An
//[48; 49]
data8 0xF5180F0000419AD5,0x00004000 // C50
data8 0x9D507D07BFBB2273,0x00004001 // C60
data8 0xCEB53F7A13A383E3,0x00004001 // C70
data8 0x8BAFEF9E0A49128F,0x00004002 // C80
data8 0xC58EF912D39E228C,0x00004002 // C90
data8 0x9A88118422BA208E,0x00004003 // CA0
data8 0xBD6C0E2477EC12CB,0x000040AC // An
//[64; 65]
data8 0xD410AC48BF7748DA,0x00004000 // C50
data8 0x89399B90AFEBD931,0x00004001 // C60
data8 0xB596DF8F77EB8560,0x00004001 // C70
data8 0xF6D9445A047FB4A6,0x00004001 // C80
data8 0xAF52F0DD65221357,0x00004002 // C90
data8 0x8989B45BFC881989,0x00004003 // CA0
data8 0xB7FCAE86E6E10D5A,0x0000410B // An
//[80; 81]
data8 0xBE759740E3B5AA84,0x00004000 // C50
data8 0xF8037B1B07D27609,0x00004000 // C60
data8 0xA4F6F6C7F0977D4F,0x00004001 // C70
data8 0xE131960233BF02C4,0x00004001 // C80
data8 0xA06DF43D3922BBE2,0x00004002 // C90
data8 0xFC266AB27255A360,0x00004002 // CA0
data8 0xD9F4B012EDAFEF2F,0x0000416F // An
//[96; 97]
data8 0xAEFC84CDA8E1EAA6,0x00004000 // C50
data8 0xE5009110DB5F3C8A,0x00004000 // C60
data8 0x98F5F48738E7B232,0x00004001 // C70
data8 0xD17EE64E21FFDC6B,0x00004001 // C80
data8 0x9596F7A7E36145CC,0x00004002 // C90
data8 0xEB64DBE50E125CAF,0x00004002 // CA0
data8 0xA090530D79E32D2E,0x000041D8 // An
//[112; 113]
data8 0xA33AEA22A16B2655,0x00004000 // C50
data8 0xD682B93BD7D7945C,0x00004000 // C60
data8 0x8FC854C6E6E30CC3,0x00004001 // C70
data8 0xC5754D828AFFDC7A,0x00004001 // C80
data8 0x8D41216B397139C2,0x00004002 // C90
data8 0xDE78D746848116E5,0x00004002 // CA0
data8 0xB8A297A2DC0630DB,0x00004244 // An
//[128; 129]
data8 0x99EB00F11D95E292,0x00004000 // C50
data8 0xCB005CB911EB779A,0x00004000 // C60
data8 0x8879AA2FDFF3A37A,0x00004001 // C70
data8 0xBBDA538AD40CAC2C,0x00004001 // C80
data8 0x8696D849D311B9DE,0x00004002 // C90
data8 0xD41E1C041481199F,0x00004002 // CA0
data8 0xEBA1A43D34EE61EE,0x000042B3 // An
//[144; 145]
data8 0x924F822578AA9F3D,0x00004000 // C50
data8 0xC193FAF9D3B36960,0x00004000 // C60
data8 0x827AE3A6B68ED0CA,0x00004001 // C70
data8 0xB3F52A27EED23F0B,0x00004001 // C80
data8 0x811A079FB3C94D79,0x00004002 // C90
data8 0xCB94415470B6F8D2,0x00004002 // CA0
data8 0x80A0260DCB3EC9AC,0x00004326 // An
//[160; 161]
data8 0x8BF24091E88B331D,0x00004000 // C50
data8 0xB9ADE01187E65201,0x00004000 // C60
data8 0xFAE4508F6E7625FE,0x00004000 // C70
data8 0xAD516668AD6D7367,0x00004001 // C80
data8 0xF8F5FF171154F637,0x00004001 // C90
data8 0xC461321268990C82,0x00004002 // CA0
data8 0xC3B693F344B0E6FE,0x0000439A // An
//
//[176; 177]
data8 0x868545EB42A258ED,0x00004000 // C50
data8 0xB2EF04ACE8BA0E6E,0x00004000 // C60
data8 0xF247D22C22E69230,0x00004000 // C70
data8 0xA7A1AB93E3981A90,0x00004001 // C80
data8 0xF10951733E2C697F,0x00004001 // C90
data8 0xBE3359BFAD128322,0x00004002 // CA0
data8 0x8000000000000000,0x00003fff
//
//[160; 161] for negatives
data8 0xA76DBD55B2E32D71,0x00003C63 // 1/An
//
// sin(pi*x)/pi
data8 0xBCBC4342112F52A2,0x00003FDE // S21
data8 0xFAFCECB86536F655,0x0000BFE3 // S19
data8 0x87E4C97F9CF09B92,0x00003FE9 // S17
data8 0xEA124C68E704C5CB,0x0000BFED // S15
data8 0x9BA38CFD59C8AA1D,0x00003FF2 // S13
data8 0x99C0B552303D5B21,0x0000BFF6 // S11
//
//[176; 177] for negatives
data8 0xBA5D5869211696FF,0x00003BEC // 1/An
//
// sin(pi*x)/pi
data8 0xD63402E79A853175,0x00003FF9 // S9
data8 0xC354723906DB36BA,0x0000BFFC // S7
data8 0xCFCE5A015E236291,0x00003FFE // S5
data8 0xD28D3312983E9918,0x0000BFFF // S3
//
//
// [1.0;1.25]
data8 0xA405530B067ECD3C,0x0000BFFC // A15
data8 0xF5B5413F95E1C282,0x00003FFD // A14
data8 0xC4DED71C782F76C8,0x0000BFFE // A13
data8 0xECF7DDDFD27C9223,0x00003FFE // A12
data8 0xFB73D31793068463,0x0000BFFE // A11
data8 0xFF173B7E66FD1D61,0x00003FFE // A10
data8 0xFFA5EF3959089E94,0x0000BFFE // A9
data8 0xFF8153BD42E71A4F,0x00003FFE // A8
data8 0xFEF9CAEE2CB5B533,0x0000BFFE // A7
data8 0xFE3F02E5EDB6811E,0x00003FFE // A6
data8 0xFB64074CED2658FB,0x0000BFFE // A5
data8 0xFB52882A095B18A4,0x00003FFE // A4
data8 0xE8508C7990A0DAC0,0x0000BFFE // A3
data8 0xFD32C611D8A881D0,0x00003FFE // A2
data8 0x93C467E37DB0C536,0x0000BFFE // A1
data8 0x8000000000000000,0x00003FFF // A0
//
// [1.25;1.5]
data8 0xD038092400619677,0x0000BFF7 // A15
data8 0xEA6DE925E6EB8C8F,0x00003FF3 // A14
data8 0xC53F83645D4597FC,0x0000BFF7 // A13
data8 0xE366DB2FB27B7ECD,0x00003FF7 // A12
data8 0xAC8FD5E11F6EEAD8,0x0000BFF8 // A11
data8 0xFB14010FB3697785,0x00003FF8 // A10
data8 0xB6F91CB5C371177B,0x0000BFF9 // A9
data8 0x85A262C6F8FEEF71,0x00003FFA // A8
data8 0xC038E6E3261568F9,0x0000BFFA // A7
data8 0x8F4BDE8883232364,0x00003FFB // A6
data8 0xBCFBBD5786537E9A,0x0000BFFB // A5
data8 0xA4C08BAF0A559479,0x00003FFC // A4
data8 0x85D74FA063E81476,0x0000BFFC // A3
data8 0xDB629FB9BBDC1C4E,0x00003FFD // A2
data8 0xF4F8FBC7C0C9D317,0x00003FC6 // A1
data8 0xE2B6E4153A57746C,0x00003FFE // A0
//
// [1.25;1.5]
data8 0x9533F9D3723B448C,0x0000BFF2 // A15
data8 0xF1F75D3C561CBBAF,0x00003FF5 // A14
data8 0xBA55A9A1FC883523,0x0000BFF8 // A13
data8 0xB5D5E9E5104FA995,0x00003FFA // A12
data8 0xFD84F35B70CD9AE2,0x0000BFFB // A11
data8 0x87445235F4688CC5,0x00003FFD // A10
data8 0xE7F236EBFB9F774E,0x0000BFFD // A9
data8 0xA6605F2721F787CE,0x00003FFE // A8
data8 0xCF579312AD7EAD72,0x0000BFFE // A7
data8 0xE96254A2407A5EAC,0x00003FFE // A6
data8 0xF41312A8572ED346,0x0000BFFE // A5
data8 0xF9535027C1B1F795,0x00003FFE // A4
data8 0xE7E82D0C613A8DE4,0x0000BFFE // A3
data8 0xFD23CD9741B460B8,0x00003FFE // A2
data8 0x93C30FD9781DBA88,0x0000BFFE // A1
data8 0xFFFFF1781FDBEE84,0x00003FFE // A0
LOCAL_OBJECT_END(tgamma_data)
//==============================================================
// Code
//==============================================================
.section .text
GLOBAL_LIBM_ENTRY(tgamma)
{ .mfi
getf.exp GR_Sign_Exp = f8
fma.s1 FR_1m2X = f8,f1,f8 // 2x
addl GR_ad_Data = @ltoff(tgamma_data), gp
}
{ .mfi
mov GR_ExpOf8 = 0x10002 // 8
fcvt.fx.trunc.s1 FR_iXt = f8 // [x]
mov GR_ExpOf05 = 0xFFFE // 0.5
};;
{ .mfi
getf.sig GR_Sig = f8
fma.s1 FR_2 = f1,f1,f1 // 2
mov GR_Addr_Mask1 = 0x780
}
{ .mlx
setf.exp FR_8 = GR_ExpOf8
movl GR_10 = 0x4024000000000000
};;
{ .mfi
ld8 GR_ad_Data = [GR_ad_Data]
fcmp.lt.s1 p14,p15 = f8,f0
tbit.z p12,p13 = GR_Sign_Exp,0x10 // p13 if x >= 2
}
{ .mlx
and GR_Bit2 = 4,GR_Sign_Exp
movl GR_12 = 0x4028000000000000
};;
{ .mfi
setf.d FR_10 = GR_10
fma.s1 FR_r02 = f8,f1,f0
extr.u GR_Tbl_Offs = GR_Sig,58,6
}
{ .mfi
(p12) mov GR_Addr_Mask1 = r0
fma.s1 FR_NormX = f8,f1,f0
cmp.ne p8,p0 = GR_Bit2,r0
};;
{ .mfi
(p8) shladd GR_Tbl_Offs = GR_Tbl_Offs,4,r0
fclass.m p10,p0 = f8,0x1E7 // Test x for NaTVal, NaN, +/-0, +/-INF
tbit.nz p11,p0 = GR_Sign_Exp,1
}
{ .mlx
add GR_Addr_Mask2 = GR_Addr_Mask1,GR_Addr_Mask1
movl GR_14 = 0x402C000000000000
};;
.pred.rel "mutex",p14,p15
{ .mfi
setf.d FR_12 = GR_12
(p14) fma.s1 FR_1m2X = f1,f1,FR_1m2X // RB=1-2|x|
tbit.nz p8,p9 = GR_Sign_Exp,0
}
{ .mfi
ldfpd FR_OvfBound,FR_Xmin = [GR_ad_Data],16
(p15) fms.s1 FR_1m2X = f1,f1,FR_1m2X // RB=1-2|x|
(p11) shladd GR_Tbl_Offs = GR_Tbl_Offs,2,r0
};;
.pred.rel "mutex",p9,p8
{ .mfi
setf.d FR_14 = GR_14
fma.s1 FR_4 = FR_2,FR_2,f0
(p8) and GR_Tbl_Offs = GR_Tbl_Offs, GR_Addr_Mask1
}
{ .mfi
setf.exp FR_05 = GR_ExpOf05
fma.s1 FR_6 = FR_2,FR_2,FR_2
(p9) and GR_Tbl_Offs = GR_Tbl_Offs, GR_Addr_Mask2
};;
.pred.rel "mutex",p9,p8
{ .mfi
(p8) shladd GR_ad_Co = GR_Tbl_Offs,1,GR_ad_Data
fcvt.xf FR_Xt = FR_iXt // [x]
(p15) tbit.z.unc p11,p0 = GR_Sign_Exp,0x10 // p11 if 0 < x < 2
}
{ .mfi
(p9) add GR_ad_Co = GR_ad_Data,GR_Tbl_Offs
fma.s1 FR_5 = FR_2,FR_2,f1
(p15) cmp.lt.unc p7,p6 = GR_ExpOf05,GR_Sign_Exp // p7 if 0 < x < 1
};;
{ .mfi
add GR_ad_Ce = 16,GR_ad_Co
(p11) frcpa.s1 FR_Rcp0,p0 = f1,f8
sub GR_Tbl_Offs = GR_ad_Co,GR_ad_Data
}
{ .mfb
ldfe FR_C01 = [GR_ad_Co],32
(p7) fms.s1 FR_r02 = FR_r02,f1,f1
// jump if x is NaTVal, NaN, +/-0, +/-INF
(p10) br.cond.spnt tgamma_spec
};;
.pred.rel "mutex",p14,p15
{ .mfi
ldfe FR_C11 = [GR_ad_Ce],32
(p14) fms.s1 FR_X2pX = f8,f8,f8 // RA=x^2+|x|
shr GR_Tbl_Ind = GR_Tbl_Offs,8
}
{ .mfb
ldfe FR_C21 = [GR_ad_Co],32
(p15) fma.s1 FR_X2pX = f8,f8,f8 // RA=x^2+x
// jump if 0 < x < 2
(p11) br.cond.spnt tgamma_from_0_to_2
};;
{ .mfi
ldfe FR_C31 = [GR_ad_Ce],32
fma.s1 FR_Rq2 = FR_2,f1,FR_1m2X // 2 + B
cmp.ltu p7,p0=0xB,GR_Tbl_Ind
}
{ .mfb
ldfe FR_C41 = [GR_ad_Co],32
fma.s1 FR_Rq3 = FR_2,FR_2,FR_1m2X // 4 + B
// jump if GR_Tbl_Ind > 11, i.e |x| is more than 192
(p7) br.cond.spnt tgamma_spec_res
};;
{ .mfi
ldfe FR_C51 = [GR_ad_Ce],32
fma.s1 FR_Rq4 = FR_6,f1,FR_1m2X // 6 + B
shr GR_Tbl_Offs = GR_Tbl_Offs,1
}
{ .mfi
ldfe FR_C61 = [GR_ad_Co],32
fma.s1 FR_Rq5 = FR_4,FR_2,FR_1m2X // 8 + B
nop.i 0
};;
{ .mfi
ldfe FR_C71 = [GR_ad_Ce],32
(p14) fms.s1 FR_r = FR_Xt,f1,f8 // r = |x| - [|x|]
shr GR_Tbl_16xInd = GR_Tbl_Offs,3
}
{ .mfi
ldfe FR_C81 = [GR_ad_Co],32
(p15) fms.s1 FR_r = f8,f1,FR_Xt // r = x - [x]
add GR_ad_Data = 0xC00,GR_ad_Data
};;
{ .mfi
ldfe FR_C91 = [GR_ad_Ce],32
fma.s1 FR_Rq6 = FR_5,FR_2,FR_1m2X // 10 + B
(p14) mov GR_0x30033 = 0x30033
}
{ .mfi
ldfe FR_CA1 = [GR_ad_Co],32
fma.s1 FR_Rq7 = FR_6,FR_2,FR_1m2X // 12 + B
sub GR_Tbl_Offs = GR_Tbl_Offs,GR_Tbl_16xInd
};;
{ .mfi
ldfe FR_C00 = [GR_ad_Ce],32
fma.s1 FR_Rq1 = FR_Rq1,FR_2,FR_X2pX // (x-1)*(x-2)
(p13) cmp.eq.unc p8,p0 = r0,GR_Tbl_16xInd // index is 0 i.e. arg from [2;16)
}
{ .mfi
ldfe FR_C10 = [GR_ad_Co],32
(p14) fms.s1 FR_AbsX = f0,f0,FR_NormX // absolute value of argument
add GR_ad_Co7 = GR_ad_Data,GR_Tbl_Offs
};;
{ .mfi
ldfe FR_C20 = [GR_ad_Ce],32
fma.s1 FR_Rq2 = FR_Rq2,FR_4,FR_X2pX // (x-3)*(x-4)
add GR_ad_Ce7 = 16,GR_ad_Co7
}
{ .mfi
ldfe FR_C30 = [GR_ad_Co],32
fma.s1 FR_Rq3 = FR_Rq3,FR_6,FR_X2pX // (x-5)*(x-6)
nop.i 0
};;
{ .mfi
ldfe FR_C40 = [GR_ad_Ce],32
fma.s1 FR_Rq4 = FR_Rq4,FR_8,FR_X2pX // (x-7)*(x-8)
(p14) cmp.leu.unc p7,p0 = GR_0x30033,GR_Sign_Exp
}
{ .mfb
ldfe FR_C50 = [GR_ad_Co7],32
fma.s1 FR_Rq5 = FR_Rq5,FR_10,FR_X2pX // (x-9)*(x-10)
// jump if x is less or equal to -2^52, i.e. x is big negative integer
(p7) br.cond.spnt tgamma_singularity
};;
{ .mfi
ldfe FR_C60 = [GR_ad_Ce7],32
fma.s1 FR_C01 = FR_C01,f1,FR_r
add GR_ad_Ce = 0x560,GR_ad_Data
}
{ .mfi
ldfe FR_C70 = [GR_ad_Co7],32
fma.s1 FR_rs = f0,f0,FR_r // reduced arg for sin(pi*x)
add GR_ad_Co = 0x550,GR_ad_Data
};;
{ .mfi
ldfe FR_C80 = [GR_ad_Ce7],32
fma.s1 FR_C11 = FR_C11,f1,FR_r
nop.i 0
}
{ .mfi
ldfe FR_C90 = [GR_ad_Co7],32
fma.s1 FR_C21 = FR_C21,f1,FR_r
nop.i 0
};;
.pred.rel "mutex",p12,p13
{ .mfi
(p13) getf.sig GR_iSig = FR_iXt
fcmp.lt.s1 p11,p0 = FR_05,FR_r
mov GR_185 = 185
}
{ .mfi
nop.m 0
fma.s1 FR_Rq6 = FR_Rq6,FR_12,FR_X2pX // (x-11)*(x-12)
nop.i 0
};;
{ .mfi
ldfe FR_CA0 = [GR_ad_Ce7],32
fma.s1 FR_C31 = FR_C31,f1,FR_r
(p12) mov GR_iSig = 0
}
{ .mfi
ldfe FR_An = [GR_ad_Co7],0x80
fma.s1 FR_C41 = FR_C41,f1,FR_r
nop.i 0
};;
{ .mfi
(p14) getf.sig GR_Sig = FR_r
fma.s1 FR_C51 = FR_C51,f1,FR_r
(p14) sub GR_iSig = r0,GR_iSig
}
{ .mfi
ldfe FR_S21 = [GR_ad_Co],32
fma.s1 FR_C61 = FR_C61,f1,FR_r
nop.i 0
};;
{ .mfi
ldfe FR_S19 = [GR_ad_Ce],32
fma.s1 FR_C71 = FR_C71,f1,FR_r
and GR_SigRqLin = 0xF,GR_iSig
}
{ .mfi
ldfe FR_S17 = [GR_ad_Co],32
fma.s1 FR_C81 = FR_C81,f1,FR_r
mov GR_2 = 2
};;
{ .mfi
(p14) ldfe FR_InvAn = [GR_ad_Co7]
fma.s1 FR_C91 = FR_C91,f1,FR_r
// if significand of r is 0 tnan argument is negative integer
(p14) cmp.eq.unc p12,p0 = r0,GR_Sig
}
{ .mfb
(p8) sub GR_SigRqLin = GR_SigRqLin,GR_2 // subtract 2 if 2 <= x < 16
fma.s1 FR_CA1 = FR_CA1,f1,FR_r
// jump if x is negative integer such that -2^52 < x < -185
(p12) br.cond.spnt tgamma_singularity
};;
{ .mfi
setf.sig FR_Xt = GR_SigRqLin
(p11) fms.s1 FR_rs = f1,f1,FR_r
(p14) cmp.ltu.unc p7,p0 = GR_185,GR_iSig
}
{ .mfb
ldfe FR_S15 = [GR_ad_Ce],32
fma.s1 FR_Rq7 = FR_Rq7,FR_14,FR_X2pX // (x-13)*(x-14)
// jump if x is noninteger such that -2^52 < x < -185
(p7) br.cond.spnt tgamma_underflow
};;
{ .mfi
ldfe FR_S13 = [GR_ad_Co],48
fma.s1 FR_C01 = FR_C01,FR_r,FR_C00
and GR_Sig2 = 0xE,GR_SigRqLin
}
{ .mfi
ldfe FR_S11 = [GR_ad_Ce],48
fma.s1 FR_C11 = FR_C11,FR_r,FR_C10
nop.i 0
};;
{ .mfi
ldfe FR_S9 = [GR_ad_Co],32
fma.s1 FR_C21 = FR_C21,FR_r,FR_C20
// should we mul by polynomial of recursion?
cmp.eq p13,p12 = r0,GR_SigRqLin
}
{ .mfi
ldfe FR_S7 = [GR_ad_Ce],32
fma.s1 FR_C31 = FR_C31,FR_r,FR_C30
nop.i 0
};;
{ .mfi
ldfe FR_S5 = [GR_ad_Co],32
fma.s1 FR_C41 = FR_C41,FR_r,FR_C40
nop.i 0
}
{ .mfi
ldfe FR_S3 = [GR_ad_Ce],32
fma.s1 FR_C51 = FR_C51,FR_r,FR_C50
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_C61 = FR_C61,FR_r,FR_C60
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_C71 = FR_C71,FR_r,FR_C70
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_C81 = FR_C81,FR_r,FR_C80
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_C91 = FR_C91,FR_r,FR_C90
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_CA1 = FR_CA1,FR_r,FR_CA0
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_C01 = FR_C01,FR_C11,f0
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_C21 = FR_C21,FR_C31,f0
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_rs2 = FR_rs,FR_rs,f0
(p12) cmp.lt.unc p7,p0 = 2,GR_Sig2 // should mul by FR_Rq2?
};;
{ .mfi
nop.m 0
fma.s1 FR_C41 = FR_C41,FR_C51,f0
nop.i 0
}
{ .mfi
nop.m 0
(p7) fma.s1 FR_Rq1 = FR_Rq1,FR_Rq2,f0
(p12) cmp.lt.unc p9,p0 = 6,GR_Sig2 // should mul by FR_Rq4?
};;
{ .mfi
nop.m 0
fma.s1 FR_C61 = FR_C61,FR_C71,f0
(p15) cmp.eq p11,p0 = r0,r0
}
{ .mfi
nop.m 0
(p9) fma.s1 FR_Rq3 = FR_Rq3,FR_Rq4,f0
(p12) cmp.lt.unc p8,p0 = 10,GR_Sig2 // should mul by FR_Rq6?
};;
{ .mfi
nop.m 0
fma.s1 FR_C81 = FR_C81,FR_C91,f0
nop.i 0
}
{ .mfi
nop.m 0
(p8) fma.s1 FR_Rq5 = FR_Rq5,FR_Rq6,f0
(p14) cmp.ltu p0,p11 = 0x9,GR_Tbl_Ind
};;
{ .mfi
nop.m 0
fcvt.xf FR_RqLin = FR_Xt
nop.i 0
}
{ .mfi
nop.m 0
(p11) fma.s1 FR_CA1 = FR_CA1,FR_An,f0
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_S21 = FR_S21,FR_rs2,FR_S19
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_S17 = FR_S17,FR_rs2,FR_S15
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_C01 = FR_C01,FR_C21,f0
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_rs4 = FR_rs2,FR_rs2,f0
(p12) cmp.lt.unc p8,p0 = 4,GR_Sig2 // should mul by FR_Rq3?
};;
{ .mfi
nop.m 0
(p8) fma.s1 FR_Rq1 = FR_Rq1,FR_Rq3,f0
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_S13 = FR_S13,FR_rs2,FR_S11
(p12) cmp.lt.unc p9,p0 = 12,GR_Sig2 // should mul by FR_Rq7?
};;
{ .mfi
nop.m 0
fma.s1 FR_C41 = FR_C41,FR_C61,f0
nop.i 0
}
{ .mfi
nop.m 0
(p9) fma.s1 FR_Rq5 = FR_Rq5,FR_Rq7,f0
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_C81 = FR_C81,FR_CA1,f0
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_S9 = FR_S9,FR_rs2,FR_S7
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_S5 = FR_S5,FR_rs2,FR_S3
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_rs3 = FR_rs2,FR_rs,f0
(p12) tbit.nz.unc p6,p0 = GR_SigRqLin,0
}
{ .mfi
nop.m 0
fma.s1 FR_rs8 = FR_rs4,FR_rs4,f0
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_S21 = FR_S21,FR_rs4,FR_S17
mov GR_ExpOf1 = 0x2FFFF
}
{ .mfi
nop.m 0
(p6) fms.s1 FR_RqLin = FR_AbsX,f1,FR_RqLin
(p12) cmp.lt.unc p8,p0 = 8,GR_Sig2 // should mul by FR_Rq5?
};;
{ .mfi
nop.m 0
fma.s1 FR_C01 = FR_C01,FR_C41,f0
nop.i 0
}
{ .mfi
nop.m 0
(p8) fma.s1 FR_Rq1 = FR_Rq1,FR_Rq5,f0
(p14) cmp.gtu.unc p7,p0 = GR_Sign_Exp,GR_ExpOf1
};;
{ .mfi
nop.m 0
fma.s1 FR_S13 = FR_S13,FR_rs4,FR_S9
nop.i 0
}
{ .mfi
nop.m 0
(p7) fma.s1 FR_C81 = FR_C81,FR_AbsX,f0
nop.i 0
};;
{ .mfi
nop.m 0
(p14) fma.s1 FR_AbsXp1 = f1,f1,FR_AbsX // |x|+1
nop.i 0
}
{ .mfi
nop.m 0
(p15) fcmp.lt.unc.s1 p0,p10 = FR_AbsX,FR_OvfBound // x >= overflow_boundary
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_rs7 = FR_rs4,FR_rs3,f0
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_S5 = FR_S5,FR_rs3,FR_rs
nop.i 0
};;
{ .mib
(p14) cmp.lt p13,p0 = r0,r0 // set p13 to 0 if x < 0
(p12) cmp.eq.unc p8,p9 = 1,GR_SigRqLin
(p10) br.cond.spnt tgamma_spec_res
};;
{ .mfi
getf.sig GR_Sig = FR_iXt
(p6) fma.s1 FR_Rq1 = FR_Rq1,FR_RqLin,f0
// should we mul by polynomial of recursion?
(p15) cmp.eq.unc p0,p11 = r0,GR_SigRqLin
}
{ .mfb
nop.m 0
fma.s1 FR_GAMMA = FR_C01,FR_C81,f0
(p11) br.cond.spnt tgamma_positives
};;
{ .mfi
nop.m 0
fma.s1 FR_S21 = FR_S21,FR_rs8,FR_S13
nop.i 0
}
{ .mfb
nop.m 0
(p13) fma.d.s0 f8 = FR_C01,FR_C81,f0
(p13) br.ret.spnt b0
};;
.pred.rel "mutex",p8,p9
{ .mfi
nop.m 0
(p9) fma.s1 FR_GAMMA = FR_GAMMA,FR_Rq1,f0
tbit.z p6,p7 = GR_Sig,0 // p6 if sin<0, p7 if sin>0
}
{ .mfi
nop.m 0
(p8) fma.s1 FR_GAMMA = FR_GAMMA,FR_RqLin,f0
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_S21 = FR_S21,FR_rs7,FR_S5
nop.i 0
};;
.pred.rel "mutex",p6,p7
{ .mfi
nop.m 0
(p6) fnma.s1 FR_GAMMA = FR_GAMMA,FR_S21,f0
nop.i 0
}
{ .mfi
nop.m 0
(p7) fma.s1 FR_GAMMA = FR_GAMMA,FR_S21,f0
mov GR_Sig2 = 1
};;
{ .mfi
nop.m 0
frcpa.s1 FR_Rcp0,p0 = f1,FR_GAMMA
cmp.ltu p13,p0 = GR_Sign_Exp,GR_ExpOf1
};;
// NR method: ineration #1
{ .mfi
(p13) getf.exp GR_Sign_Exp = FR_AbsX
fnma.s1 FR_Rcp1 = FR_Rcp0,FR_GAMMA,f1 // t = 1 - r0*x
(p13) shl GR_Sig2 = GR_Sig2,63
};;
{ .mfi
(p13) getf.sig GR_Sig = FR_AbsX
nop.f 0
(p13) mov GR_NzOvfBound = 0xFBFF
};;
{ .mfi
(p13) cmp.ltu.unc p8,p0 = GR_Sign_Exp,GR_NzOvfBound // p8 <- overflow
nop.f 0
(p13) cmp.eq.unc p9,p0 = GR_Sign_Exp,GR_NzOvfBound
};;
{ .mfb
nop.m 0
(p13) fma.d.s0 FR_X = f1,f1,f8 // set deno & inexact flags
(p8) br.cond.spnt tgamma_ovf_near_0 //tgamma_neg_overflow
};;
{ .mib
nop.m 0
(p9) cmp.eq.unc p8,p0 = GR_Sig,GR_Sig2
(p8) br.cond.spnt tgamma_ovf_near_0_boundary //tgamma_neg_overflow
};;
{ .mfi
nop.m 0
fma.s1 FR_Rcp1 = FR_Rcp0,FR_Rcp1,FR_Rcp0
nop.i 0
};;
// NR method: ineration #2
{ .mfi
nop.m 0
fnma.s1 FR_Rcp2 = FR_Rcp1,FR_GAMMA,f1 // t = 1 - r1*x
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_Rcp2 = FR_Rcp1,FR_Rcp2,FR_Rcp1
nop.i 0
};;
// NR method: ineration #3
{ .mfi
nop.m 0
fnma.s1 FR_Rcp3 = FR_Rcp2,FR_GAMMA,f1 // t = 1 - r2*x
nop.i 0
}
{ .mfi
nop.m 0
(p13) fma.s1 FR_Rcp2 = FR_Rcp2,FR_AbsXp1,f0
(p14) cmp.ltu p10,p11 = 0x9,GR_Tbl_Ind
};;
.pred.rel "mutex",p10,p11
{ .mfi
nop.m 0
(p10) fma.s1 FR_GAMMA = FR_Rcp2,FR_Rcp3,FR_Rcp2
nop.i 0
}
{ .mfi
nop.m 0
(p11) fma.d.s0 f8 = FR_Rcp2,FR_Rcp3,FR_Rcp2
nop.i 0
};;
{ .mfb
nop.m 0
(p10) fma.d.s0 f8 = FR_GAMMA,FR_InvAn,f0
br.ret.sptk b0
};;
// here if x >= 3
//--------------------------------------------------------------------
.align 32
tgamma_positives:
.pred.rel "mutex",p8,p9
{ .mfi
nop.m 0
(p9) fma.d.s0 f8 = FR_GAMMA,FR_Rq1,f0
nop.i 0
}
{ .mfb
nop.m 0
(p8) fma.d.s0 f8 = FR_GAMMA,FR_RqLin,f0
br.ret.sptk b0
};;
// here if 0 < x < 1
//--------------------------------------------------------------------
.align 32
tgamma_from_0_to_2:
{ .mfi
getf.exp GR_Sign_Exp = FR_r02
fms.s1 FR_r = FR_r02,f1,FR_Xmin
mov GR_ExpOf025 = 0xFFFD
}
{ .mfi
add GR_ad_Co = 0x1200,GR_ad_Data
(p6) fnma.s1 FR_Rcp1 = FR_Rcp0,FR_NormX,f1 // t = 1 - r0*x
(p6) mov GR_Sig2 = 1
};;
{ .mfi
(p6) getf.sig GR_Sig = FR_NormX
nop.f 0
(p6) shl GR_Sig2 = GR_Sig2,63
}
{ .mfi
add GR_ad_Ce = 0x1210,GR_ad_Data
nop.f 0
(p6) mov GR_NzOvfBound = 0xFBFF
};;
{ .mfi
cmp.eq p8,p0 = GR_Sign_Exp,GR_ExpOf05 // r02 >= 1/2
nop.f 0
cmp.eq p9,p10 = GR_Sign_Exp,GR_ExpOf025 // r02 >= 1/4
}
{ .mfi
(p6) cmp.ltu.unc p11,p0 = GR_Sign_Exp,GR_NzOvfBound // p11 <- overflow
nop.f 0
(p6) cmp.eq.unc p12,p0 = GR_Sign_Exp,GR_NzOvfBound
};;
.pred.rel "mutex",p8,p9
{ .mfi
(p8) add GR_ad_Co = 0x200,GR_ad_Co
(p6) fma.d.s0 FR_X = f1,f1,f8 // set deno & inexact flags
(p9) add GR_ad_Co = 0x100,GR_ad_Co
}
{ .mib
(p8) add GR_ad_Ce = 0x200,GR_ad_Ce
(p9) add GR_ad_Ce = 0x100,GR_ad_Ce
(p11) br.cond.spnt tgamma_ovf_near_0 //tgamma_spec_res
};;
{ .mfi
ldfe FR_A15 = [GR_ad_Co],32
nop.f 0
(p12) cmp.eq.unc p13,p0 = GR_Sig,GR_Sig2
}
{ .mfb
ldfe FR_A14 = [GR_ad_Ce],32
nop.f 0
(p13) br.cond.spnt tgamma_ovf_near_0_boundary //tgamma_spec_res
};;
{ .mfi
ldfe FR_A13 = [GR_ad_Co],32
nop.f 0
nop.i 0
}
{ .mfi
ldfe FR_A12 = [GR_ad_Ce],32
nop.f 0
nop.i 0
};;
.pred.rel "mutex",p9,p10
{ .mfi
ldfe FR_A11 = [GR_ad_Co],32
(p10) fma.s1 FR_r2 = FR_r02,FR_r02,f0
nop.i 0
}
{ .mfi
ldfe FR_A10 = [GR_ad_Ce],32
(p9) fma.s1 FR_r2 = FR_r,FR_r,f0
nop.i 0
};;
{ .mfi
ldfe FR_A9 = [GR_ad_Co],32
(p6) fma.s1 FR_Rcp1 = FR_Rcp0,FR_Rcp1,FR_Rcp0
nop.i 0
}
{ .mfi
ldfe FR_A8 = [GR_ad_Ce],32
(p10) fma.s1 FR_r = f0,f0,FR_r02
nop.i 0
};;
{ .mfi
ldfe FR_A7 = [GR_ad_Co],32
nop.f 0
nop.i 0
}
{ .mfi
ldfe FR_A6 = [GR_ad_Ce],32
nop.f 0
nop.i 0
};;
{ .mfi
ldfe FR_A5 = [GR_ad_Co],32
nop.f 0
nop.i 0
}
{ .mfi
ldfe FR_A4 = [GR_ad_Ce],32
nop.f 0
nop.i 0
};;
{ .mfi
ldfe FR_A3 = [GR_ad_Co],32
nop.f 0
nop.i 0
}
{ .mfi
ldfe FR_A2 = [GR_ad_Ce],32
nop.f 0
nop.i 0
};;
{ .mfi
ldfe FR_A1 = [GR_ad_Co],32
fma.s1 FR_r4 = FR_r2,FR_r2,f0
nop.i 0
}
{ .mfi
ldfe FR_A0 = [GR_ad_Ce],32
nop.f 0
nop.i 0
};;
{ .mfi
nop.m 0
(p6) fnma.s1 FR_Rcp2 = FR_Rcp1,FR_NormX,f1 // t = 1 - r1*x
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_A15 = FR_A15,FR_r,FR_A14
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_A11 = FR_A11,FR_r,FR_A10
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_r8 = FR_r4,FR_r4,f0
nop.i 0
};;
{ .mfi
nop.m 0
(p6) fma.s1 FR_Rcp2 = FR_Rcp1,FR_Rcp2,FR_Rcp1
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_A7 = FR_A7,FR_r,FR_A6
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_A3 = FR_A3,FR_r,FR_A2
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_A15 = FR_A15,FR_r,FR_A13
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_A11 = FR_A11,FR_r,FR_A9
nop.i 0
};;
{ .mfi
nop.m 0
(p6) fnma.s1 FR_Rcp3 = FR_Rcp2,FR_NormX,f1 // t = 1 - r1*x
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_A7 = FR_A7,FR_r,FR_A5
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_A3 = FR_A3,FR_r,FR_A1
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_A15 = FR_A15,FR_r,FR_A12
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_A11 = FR_A11,FR_r,FR_A8
nop.i 0
};;
{ .mfi
nop.m 0
(p6) fma.s1 FR_Rcp3 = FR_Rcp2,FR_Rcp3,FR_Rcp2
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_A7 = FR_A7,FR_r,FR_A4
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_A3 = FR_A3,FR_r,FR_A0
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 FR_A15 = FR_A15,FR_r4,FR_A11
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_A7 = FR_A7,FR_r4,FR_A3
nop.i 0
};;
.pred.rel "mutex",p6,p7
{ .mfi
nop.m 0
(p6) fma.s1 FR_A15 = FR_A15,FR_r8,FR_A7
nop.i 0
}
{ .mfi
nop.m 0
(p7) fma.d.s0 f8 = FR_A15,FR_r8,FR_A7
nop.i 0
};;
{ .mfb
nop.m 0
(p6) fma.d.s0 f8 = FR_A15,FR_Rcp3,f0
br.ret.sptk b0
};;
// overflow
//--------------------------------------------------------------------
.align 32
tgamma_ovf_near_0_boundary:
.pred.rel "mutex",p14,p15
{ .mfi
mov GR_fpsr = ar.fpsr
nop.f 0
(p15) mov r8 = 0x7ff
}
{ .mfi
nop.m 0
nop.f 0
(p14) mov r8 = 0xfff
};;
{ .mfi
nop.m 0
nop.f 0
shl r8 = r8,52
};;
{ .mfi
sub r8 = r8,r0,1
nop.f 0
extr.u GR_fpsr = GR_fpsr,10,2 // rounding mode
};;
.pred.rel "mutex",p14,p15
{ .mfi
// set p8 to 0 in case of overflow and to 1 otherwise
// for negative arg:
// no overflow if rounding mode either Z or +Inf, i.e.
// GR_fpsr > 1
(p14) cmp.lt p8,p0 = 1,GR_fpsr
nop.f 0
// for positive arg:
// no overflow if rounding mode either Z or -Inf, i.e.
// (GR_fpsr & 1) == 0
(p15) tbit.z p0,p8 = GR_fpsr,0
};;
{ .mib
(p8) setf.d f8 = r8 // set result to 0x7fefffffffffffff without
// OVERFLOW flag raising
nop.i 0
(p8) br.ret.sptk b0
};;
.align 32
tgamma_ovf_near_0:
{ .mfi
mov r8 = 0x1FFFE
nop.f 0
nop.i 0
};;
{ .mfi
setf.exp f9 = r8
fmerge.s FR_X = f8,f8
mov GR_TAG = 258 // overflow
};;
.pred.rel "mutex",p14,p15
{ .mfi
nop.m 0
(p15) fma.d.s0 f8 = f9,f9,f0 // Set I,O and +INF result
nop.i 0
}
{ .mfb
nop.m 0
(p14) fnma.d.s0 f8 = f9,f9,f0 // Set I,O and -INF result
br.cond.sptk tgamma_libm_err
};;
// overflow or absolute value of x is too big
//--------------------------------------------------------------------
.align 32
tgamma_spec_res:
{ .mfi
mov GR_0x30033 = 0x30033
(p14) fcmp.eq.unc.s1 p10,p11 = f8,FR_Xt
(p15) mov r8 = 0x1FFFE
};;
{ .mfi
(p15) setf.exp f9 = r8
nop.f 0
nop.i 0
};;
{ .mfb
(p11) cmp.ltu.unc p7,p8 = GR_0x30033,GR_Sign_Exp
nop.f 0
(p10) br.cond.spnt tgamma_singularity
};;
.pred.rel "mutex",p7,p8
{ .mbb
nop.m 0
(p7) br.cond.spnt tgamma_singularity
(p8) br.cond.spnt tgamma_underflow
};;
{ .mfi
nop.m 0
fmerge.s FR_X = f8,f8
mov GR_TAG = 258 // overflow
}
{ .mfb
nop.m 0
(p15) fma.d.s0 f8 = f9,f9,f0 // Set I,O and +INF result
br.cond.sptk tgamma_libm_err
};;
// x is negative integer or +/-0
//--------------------------------------------------------------------
.align 32
tgamma_singularity:
{ .mfi
nop.m 0
fmerge.s FR_X = f8,f8
mov GR_TAG = 259 // negative
}
{ .mfb
nop.m 0
frcpa.s0 f8,p0 = f0,f0
br.cond.sptk tgamma_libm_err
};;
// x is negative noninteger with big absolute value
//--------------------------------------------------------------------
.align 32
tgamma_underflow:
{ .mmi
getf.sig GR_Sig = FR_iXt
mov r11 = 0x00001
nop.i 0
};;
{ .mfi
setf.exp f9 = r11
nop.f 0
nop.i 0
};;
{ .mfi
nop.m 0
nop.f 0
tbit.z p6,p7 = GR_Sig,0
};;
.pred.rel "mutex",p6,p7
{ .mfi
nop.m 0
(p6) fms.d.s0 f8 = f9,f9,f9
nop.i 0
}
{ .mfb
nop.m 0
(p7) fma.d.s0 f8 = f9,f9,f9
br.ret.sptk b0
};;
// x for natval, nan, +/-inf or +/-0
//--------------------------------------------------------------------
.align 32
tgamma_spec:
{ .mfi
nop.m 0
fclass.m p6,p0 = f8,0x1E1 // Test x for natval, nan, +inf
nop.i 0
};;
{ .mfi
nop.m 0
fclass.m p7,p8 = f8,0x7 // +/-0
nop.i 0
};;
{ .mfi
nop.m 0
fmerge.s FR_X = f8,f8
nop.i 0
}
{ .mfb
nop.m 0
(p6) fma.d.s0 f8 = f8,f1,f8
(p6) br.ret.spnt b0
};;
.pred.rel "mutex",p7,p8
{ .mfi
(p7) mov GR_TAG = 259 // negative
(p7) frcpa.s0 f8,p0 = f1,f8
nop.i 0
}
{ .mib
nop.m 0
nop.i 0
(p8) br.cond.spnt tgamma_singularity
};;
.align 32
tgamma_libm_err:
{ .mfi
alloc r32 = ar.pfs,1,4,4,0
nop.f 0
mov GR_Parameter_TAG = GR_TAG
};;
GLOBAL_LIBM_END(tgamma)
LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
};;
{ .mmi
stfd [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
{ .mib
stfd [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
nop.b 0
}
{ .mib
stfd [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
nop.m 0
nop.m 0
add GR_Parameter_RESULT = 48,sp
};;
{ .mmi
ldfd f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
LOCAL_LIBM_END(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
|