summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/s_tanl.S
blob: b59936c4a12d18f1d4ca37aafcb240742e42c580 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
.file "tancotl.s"


// Copyright (c) 2000 - 2004, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.

// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
//*********************************************************************
//
// History:
//
// 02/02/00 (hand-optimized)
// 04/04/00 Unwind support added
// 12/28/00 Fixed false invalid flags
// 02/06/02 Improved speed
// 05/07/02 Changed interface to __libm_pi_by_2_reduce
// 05/30/02 Added cotl
// 02/10/03 Reordered header: .section, .global, .proc, .align;
//          used data8 for long double table values
// 05/15/03 Reformatted data tables
// 10/26/04 Avoided using r14-31 as scratch so not clobbered by dynamic loader
//
//*********************************************************************
//
// Functions:   tanl(x) = tangent(x), for double-extended precision x values
//              cotl(x) = cotangent(x), for double-extended precision x values
//
//*********************************************************************
//
// Resources Used:
//
//    Floating-Point Registers: f8 (Input and Return Value)
//                              f9-f15
//                              f32-f121
//
//    General Purpose Registers:
//      r32-r70
//
//    Predicate Registers:      p6-p15
//
//*********************************************************************
//
// IEEE Special Conditions for tanl:
//
//    Denormal  fault raised on denormal inputs
//    Overflow exceptions do not occur
//    Underflow exceptions raised when appropriate for tan
//    (No specialized error handling for this routine)
//    Inexact raised when appropriate by algorithm
//
//    tanl(SNaN) = QNaN
//    tanl(QNaN) = QNaN
//    tanl(inf) = QNaN
//    tanl(+/-0) = +/-0
//
//*********************************************************************
//
// IEEE Special Conditions for cotl:
//
//    Denormal  fault raised on denormal inputs
//    Overflow exceptions occur at zero and near zero
//    Underflow exceptions do not occur
//    Inexact raised when appropriate by algorithm
//
//    cotl(SNaN) = QNaN
//    cotl(QNaN) = QNaN
//    cotl(inf) = QNaN
//    cotl(+/-0) = +/-Inf and error handling is called
//
//*********************************************************************
//
//    Below are mathematical and algorithmic descriptions for tanl.
//    For cotl we use next identity cot(x) = -tan(x + Pi/2).
//    So, to compute cot(x) we just need to increment N (N = N + 1)
//    and invert sign of the computed result.
//
//*********************************************************************
//
// Mathematical Description
//
// We consider the computation of FPTANL of Arg. Now, given
//
//      Arg = N pi/2  + alpha,          |alpha| <= pi/4,
//
// basic mathematical relationship shows that
//
//      tan( Arg ) =  tan( alpha )     if N is even;
//                 = -cot( alpha )      otherwise.
//
// The value of alpha is obtained by argument reduction and
// represented by two working precision numbers r and c where
//
//      alpha =  r  +  c     accurately.
//
// The reduction method is described in a previous write up.
// The argument reduction scheme identifies 4 cases. For Cases 2
// and 4, because |alpha| is small, tan(r+c) and -cot(r+c) can be
// computed very easily by 2 or 3 terms of the Taylor series
// expansion as follows:
//
// Case 2:
// -------
//
//      tan(r + c) = r + c + r^3/3          ...accurately
//     -cot(r + c) = -1/(r+c) + r/3          ...accurately
//
// Case 4:
// -------
//
//      tan(r + c) = r + c + r^3/3 + 2r^5/15     ...accurately
//     -cot(r + c) = -1/(r+c) + r/3 + r^3/45     ...accurately
//
//
// The only cases left are Cases 1 and 3 of the argument reduction
// procedure. These two cases will be merged since after the
// argument is reduced in either cases, we have the reduced argument
// represented as r + c and that the magnitude |r + c| is not small
// enough to allow the usage of a very short approximation.
//
// The greatest challenge of this task is that the second terms of
// the Taylor series for tan(r) and -cot(r)
//
//      r + r^3/3 + 2 r^5/15 + ...
//
// and
//
//      -1/r + r/3 + r^3/45 + ...
//
// are not very small when |r| is close to pi/4 and the rounding
// errors will be a concern if simple polynomial accumulation is
// used. When |r| < 2^(-2), however, the second terms will be small
// enough (5 bits or so of right shift) that a normal Horner
// recurrence suffices. Hence there are two cases that we consider
// in the accurate computation of tan(r) and cot(r), |r| <= pi/4.
//
// Case small_r: |r| < 2^(-2)
// --------------------------
//
// Since Arg = N pi/4 + r + c accurately, we have
//
//      tan(Arg) =  tan(r+c)            for N even,
//               = -cot(r+c)            otherwise.
//
// Here for this case, both tan(r) and -cot(r) can be approximated
// by simple polynomials:
//
//      tan(r) =    r + P1_1 r^3 + P1_2 r^5 + ... + P1_9 r^19
//     -cot(r) = -1/r + Q1_1 r   + Q1_2 r^3 + ... + Q1_7 r^13
//
// accurately. Since |r| is relatively small, tan(r+c) and
// -cot(r+c) can be accurately approximated by replacing r with
// r+c only in the first two terms of the corresponding polynomials.
//
// Note that P1_1 (and Q1_1 for that matter) approximates 1/3 to
// almost 64 sig. bits, thus
//
//      P1_1 (r+c)^3 =  P1_1 r^3 + c * r^2     accurately.
//
// Hence,
//
//      tan(r+c) =    r + P1_1 r^3 + P1_2 r^5 + ... + P1_9 r^19
//                     + c*(1 + r^2)
//
//        -cot(r+c) = -1/(r+c) + Q1_1 r   + Q1_2 r^3 + ... + Q1_7 r^13
//               + Q1_1*c
//
//
// Case normal_r: 2^(-2) <= |r| <= pi/4
// ------------------------------------
//
// This case is more likely than the previous one if one considers
// r to be uniformly distributed in [-pi/4 pi/4].
//
// The required calculation is either
//
//      tan(r + c)  =  tan(r)  +  correction,  or
//     -cot(r + c)  = -cot(r)  +  correction.
//
// Specifically,
//
//      tan(r + c) =  tan(r) + c tan'(r)  + O(c^2)
//                 =  tan(r) + c sec^2(r) + O(c^2)
//                 =  tan(r) + c SEC_sq     ...accurately
//                as long as SEC_sq approximates sec^2(r)
//                to, say, 5 bits or so.
//
// Similarly,
//
//     -cot(r + c) = -cot(r) - c cot'(r)  + O(c^2)
//                 = -cot(r) + c csc^2(r) + O(c^2)
//                 = -cot(r) + c CSC_sq     ...accurately
//                as long as CSC_sq approximates csc^2(r)
//                to, say, 5 bits or so.
//
// We therefore concentrate on accurately calculating tan(r) and
// cot(r) for a working-precision number r, |r| <= pi/4 to within
// 0.1% or so.
//
// We will employ a table-driven approach. Let
//
//      r = sgn_r * 2^k * 1.b_1 b_2 ... b_5 ... b_63
//        = sgn_r * ( B + x )
//
// where
//
//      B = 2^k * 1.b_1 b_2 ... b_5 1
//      x = |r| - B
//
// Now,
//                   tan(B)  +   tan(x)
//      tan( B + x ) =  ------------------------
//                   1 -  tan(B)*tan(x)
//
//               /                         \
//               |   tan(B)  +   tan(x)          |

//      = tan(B) +  | ------------------------ - tan(B) |
//               |     1 -  tan(B)*tan(x)          |
//               \                         /
//
//                 sec^2(B) * tan(x)
//      = tan(B) + ------------------------
//                 1 -  tan(B)*tan(x)
//
//                (1/[sin(B)*cos(B)]) * tan(x)
//      = tan(B) + --------------------------------
//                      cot(B)  -  tan(x)
//
//
// Clearly, the values of tan(B), cot(B) and 1/(sin(B)*cos(B)) are
// calculated beforehand and stored in a table. Since
//
//      |x| <= 2^k * 2^(-6)  <= 2^(-7)  (because k = -1, -2)
//
// a very short polynomial will be sufficient to approximate tan(x)
// accurately. The details involved in computing the last expression
// will be given in the next section on algorithm description.
//
//
// Now, we turn to the case where cot( B + x ) is needed.
//
//
//                   1 - tan(B)*tan(x)
//      cot( B + x ) =  ------------------------
//                   tan(B)  +  tan(x)
//
//               /                           \
//               |   1 - tan(B)*tan(x)              |

//      = cot(B) +  | ----------------------- - cot(B) |
//               |     tan(B)  +  tan(x)            |
//               \                           /
//
//               [tan(B) + cot(B)] * tan(x)
//      = cot(B) - ----------------------------
//                   tan(B)  +  tan(x)
//
//                (1/[sin(B)*cos(B)]) * tan(x)
//      = cot(B) - --------------------------------
//                      tan(B)  +  tan(x)
//
//
// Note that the values of tan(B), cot(B) and 1/(sin(B)*cos(B)) that
// are needed are the same set of values needed in the previous
// case.
//
// Finally, we can put all the ingredients together as follows:
//
//      Arg = N * pi/2 +  r + c          ...accurately
//
//      tan(Arg) =  tan(r) + correction    if N is even;
//               = -cot(r) + correction    otherwise.
//
// For Cases 2 and 4,
//
//     Case 2:
//     tan(Arg) =  tan(r + c) = r + c + r^3/3           N even
//              = -cot(r + c) = -1/(r+c) + r/3           N odd
//     Case 4:
//     tan(Arg) =  tan(r + c) = r + c + r^3/3 + 2r^5/15  N even
//              = -cot(r + c) = -1/(r+c) + r/3 + r^3/45  N odd
//
//
// For Cases 1 and 3,
//
//     Case small_r: |r| < 2^(-2)
//
//      tan(Arg) =  r + P1_1 r^3 + P1_2 r^5 + ... + P1_9 r^19
//                     + c*(1 + r^2)               N even
//
//               = -1/(r+c) + Q1_1 r   + Q1_2 r^3 + ... + Q1_7 r^13
//                     + Q1_1*c                    N odd
//
//     Case normal_r: 2^(-2) <= |r| <= pi/4
//
//      tan(Arg) =  tan(r) + c * sec^2(r)     N even
//               = -cot(r) + c * csc^2(r)     otherwise
//
//     For N even,
//
//      tan(Arg) = tan(r) + c*sec^2(r)
//               = tan( sgn_r * (B+x) ) + c * sec^2(|r|)
//               = sgn_r * ( tan(B+x)  + sgn_r*c*sec^2(|r|) )
//               = sgn_r * ( tan(B+x)  + sgn_r*c*sec^2(B) )
//
// since B approximates |r| to 2^(-6) in relative accuracy.
//
//                 /            (1/[sin(B)*cos(B)]) * tan(x)
//    tan(Arg) = sgn_r * | tan(B) + --------------------------------
//                 \                     cot(B)  -  tan(x)
//                                        \
//                       + CORR  |

//                                     /
// where
//
//    CORR = sgn_r*c*tan(B)*SC_inv(B);  SC_inv(B) = 1/(sin(B)*cos(B)).
//
// For N odd,
//
//      tan(Arg) = -cot(r) + c*csc^2(r)
//               = -cot( sgn_r * (B+x) ) + c * csc^2(|r|)
//               = sgn_r * ( -cot(B+x)  + sgn_r*c*csc^2(|r|) )
//               = sgn_r * ( -cot(B+x)  + sgn_r*c*csc^2(B) )
//
// since B approximates |r| to 2^(-6) in relative accuracy.
//
//                 /            (1/[sin(B)*cos(B)]) * tan(x)
//    tan(Arg) = sgn_r * | -cot(B) + --------------------------------
//                 \                     tan(B)  +  tan(x)
//                                        \
//                       + CORR  |

//                                     /
// where
//
//    CORR = sgn_r*c*cot(B)*SC_inv(B);  SC_inv(B) = 1/(sin(B)*cos(B)).
//
//
// The actual algorithm prescribes how all the mathematical formulas
// are calculated.
//
//
// 2. Algorithmic Description
// ==========================
//
// 2.1 Computation for Cases 2 and 4.
// ----------------------------------
//
// For Case 2, we use two-term polynomials.
//
//    For N even,
//
//    rsq := r * r
//    Poly := c + r * rsq * P1_1
//    Result := r + Poly          ...in user-defined rounding
//
//    For N odd,
//    S_hi  := -frcpa(r)               ...8 bits
//    S_hi  := S_hi + S_hi*(1 + S_hi*r)     ...16 bits
//    S_hi  := S_hi + S_hi*(1 + S_hi*r)     ...32 bits
//    S_hi  := S_hi + S_hi*(1 + S_hi*r)     ...64 bits
//    S_lo  := S_hi*( (1 + S_hi*r) + S_hi*c )
//    ...S_hi + S_lo is -1/(r+c) to extra precision
//    S_lo  := S_lo + Q1_1*r
//
//    Result := S_hi + S_lo     ...in user-defined rounding
//
// For Case 4, we use three-term polynomials
//
//    For N even,
//
//    rsq := r * r
//    Poly := c + r * rsq * (P1_1 + rsq * P1_2)
//    Result := r + Poly          ...in user-defined rounding
//
//    For N odd,
//    S_hi  := -frcpa(r)               ...8 bits
//    S_hi  := S_hi + S_hi*(1 + S_hi*r)     ...16 bits
//    S_hi  := S_hi + S_hi*(1 + S_hi*r)     ...32 bits
//    S_hi  := S_hi + S_hi*(1 + S_hi*r)     ...64 bits
//    S_lo  := S_hi*( (1 + S_hi*r) + S_hi*c )
//    ...S_hi + S_lo is -1/(r+c) to extra precision
//    rsq   := r * r
//    P      := Q1_1 + rsq*Q1_2
//    S_lo  := S_lo + r*P
//
//    Result := S_hi + S_lo     ...in user-defined rounding
//
//
// Note that the coefficients P1_1, P1_2, Q1_1, and Q1_2 are
// the same as those used in the small_r case of Cases 1 and 3
// below.
//
//
// 2.2 Computation for Cases 1 and 3.
// ----------------------------------
// This is further divided into the case of small_r,
// where |r| < 2^(-2), and the case of normal_r, where |r| lies between
// 2^(-2) and pi/4.
//
// Algorithm for the case of small_r
// ---------------------------------
//
// For N even,
//      rsq   := r * r
//      Poly1 := rsq*(P1_1 + rsq*(P1_2 + rsq*P1_3))
//      r_to_the_8    := rsq * rsq
//      r_to_the_8    := r_to_the_8 * r_to_the_8
//      Poly2 := P1_4 + rsq*(P1_5 + rsq*(P1_6 + ... rsq*P1_9))
//      CORR  := c * ( 1 + rsq )
//      Poly  := Poly1 + r_to_the_8*Poly2
//      Poly := r*Poly + CORR
//      Result := r + Poly     ...in user-defined rounding
//      ...note that Poly1 and r_to_the_8 can be computed in parallel
//      ...with Poly2 (Poly1 is intentionally set to be much
//      ...shorter than Poly2 so that r_to_the_8 and CORR can be hidden)
//
// For N odd,
//      S_hi  := -frcpa(r)               ...8 bits
//      S_hi  := S_hi + S_hi*(1 + S_hi*r)     ...16 bits
//      S_hi  := S_hi + S_hi*(1 + S_hi*r)     ...32 bits
//      S_hi  := S_hi + S_hi*(1 + S_hi*r)     ...64 bits
//      S_lo  := S_hi*( (1 + S_hi*r) + S_hi*c )
//      ...S_hi + S_lo is -1/(r+c) to extra precision
//      S_lo  := S_lo + Q1_1*c
//
//      ...S_hi and S_lo are computed in parallel with
//      ...the following
//      rsq := r*r
//      P   := Q1_1 + rsq*(Q1_2 + rsq*(Q1_3 + ... + rsq*Q1_7))
//
//      Poly :=  r*P + S_lo
//      Result :=  S_hi  +  Poly      ...in user-defined rounding
//
//
// Algorithm for the case of normal_r
// ----------------------------------
//
// Here, we first consider the computation of tan( r + c ). As
// presented in the previous section,
//
//      tan( r + c )  =  tan(r) + c * sec^2(r)
//                 =  sgn_r * [ tan(B+x) + CORR ]
//      CORR = sgn_r * c * tan(B) * 1/[sin(B)*cos(B)]
//
// because sec^2(r) = sec^(|r|), and B approximate |r| to 6.5 bits.
//
//      tan( r + c ) =
//           /           (1/[sin(B)*cos(B)]) * tan(x)
//      sgn_r * | tan(B) + --------------------------------  +
//           \                     cot(B)  -  tan(x)
//                                \
//                          CORR  |

//                                /
//
// The values of tan(B), cot(B) and 1/(sin(B)*cos(B)) are
// calculated beforehand and stored in a table. Specifically,
// the table values are
//
//      tan(B)             as  T_hi  +  T_lo;
//      cot(B)             as  C_hi  +  C_lo;
//      1/[sin(B)*cos(B)]  as  SC_inv
//
// T_hi, C_hi are in  double-precision  memory format;
// T_lo, C_lo are in  single-precision  memory format;
// SC_inv     is  in extended-precision memory format.
//
// The value of tan(x) will be approximated by a short polynomial of
// the form
//
//      tan(x)  as  x  +  x * P, where
//           P  =   x^2 * (P2_1 + x^2 * (P2_2 + x^2 * P2_3))
//
// Because |x| <= 2^(-7), cot(B) - x approximates cot(B) - tan(x)
// to a relative accuracy better than 2^(-20). Thus, a good
// initial guess of 1/( cot(B) - tan(x) ) to initiate the iterative
// division is:
//
//      1/(cot(B) - tan(x))      is approximately
//      1/(cot(B) -   x)         is
//      tan(B)/(1 - x*tan(B))    is approximately
//      T_hi / ( 1 - T_hi * x )  is approximately
//
//      T_hi * [ 1 + (Thi * x) + (T_hi * x)^2 ]
//
// The calculation of tan(r+c) therefore proceed as follows:
//
//      Tx     := T_hi * x
//      xsq     := x * x
//
//      V_hi     := T_hi*(1 + Tx*(1 + Tx))
//      P     := xsq * (P1_1 + xsq*(P1_2 + xsq*P1_3))
//      ...V_hi serves as an initial guess of 1/(cot(B) - tan(x))
//         ...good to about 20 bits of accuracy
//
//      tanx     := x + x*P
//      D     := C_hi - tanx
//      ...D is a double precision denominator: cot(B) - tan(x)
//
//      V_hi     := V_hi + V_hi*(1 - V_hi*D)
//      ....V_hi approximates 1/(cot(B)-tan(x)) to 40 bits
//
//      V_lo     := V_hi * ( [ (1 - V_hi*C_hi) + V_hi*tanx ]
//                           - V_hi*C_lo )   ...observe all order
//         ...V_hi + V_lo approximates 1/(cot(B) - tan(x))
//      ...to extra accuracy
//
//      ...               SC_inv(B) * (x + x*P)
//      ...   tan(B) +      ------------------------- + CORR
//         ...                cot(B) - (x + x*P)
//      ...
//      ... = tan(B) + SC_inv(B)*(x + x*P)*(V_hi + V_lo) + CORR
//      ...
//
//      Sx     := SC_inv * x
//      CORR     := sgn_r * c * SC_inv * T_hi
//
//      ...put the ingredients together to compute
//      ...               SC_inv(B) * (x + x*P)
//      ...   tan(B) +      ------------------------- + CORR
//         ...                cot(B) - (x + x*P)
//      ...
//      ... = tan(B) + SC_inv(B)*(x + x*P)*(V_hi + V_lo) + CORR
//      ...
//      ... = T_hi + T_lo + CORR +
//      ...    Sx * V_hi + Sx * V_lo + Sx * P *(V_hi + V_lo)
//
//      CORR := CORR + T_lo
//      tail := V_lo + P*(V_hi + V_lo)
//         tail := Sx * tail  +  CORR
//      tail := Sx * V_hi  +  tail
//         T_hi := sgn_r * T_hi
//
//         ...T_hi + sgn_r*tail  now approximate
//      ...sgn_r*(tan(B+x) + CORR) accurately
//
//      Result :=  T_hi + sgn_r*tail  ...in user-defined
//                           ...rounding control
//      ...It is crucial that independent paths be fully
//      ...exploited for performance's sake.
//
//
// Next, we consider the computation of -cot( r + c ). As
// presented in the previous section,
//
//        -cot( r + c )  =  -cot(r) + c * csc^2(r)
//                 =  sgn_r * [ -cot(B+x) + CORR ]
//      CORR = sgn_r * c * cot(B) * 1/[sin(B)*cos(B)]
//
// because csc^2(r) = csc^(|r|), and B approximate |r| to 6.5 bits.
//
//        -cot( r + c ) =
//           /             (1/[sin(B)*cos(B)]) * tan(x)
//      sgn_r * | -cot(B) + --------------------------------  +
//           \                     tan(B)  +  tan(x)
//                                \
//                          CORR  |

//                                /
//
// The values of tan(B), cot(B) and 1/(sin(B)*cos(B)) are
// calculated beforehand and stored in a table. Specifically,
// the table values are
//
//      tan(B)             as  T_hi  +  T_lo;
//      cot(B)             as  C_hi  +  C_lo;
//      1/[sin(B)*cos(B)]  as  SC_inv
//
// T_hi, C_hi are in  double-precision  memory format;
// T_lo, C_lo are in  single-precision  memory format;
// SC_inv     is  in extended-precision memory format.
//
// The value of tan(x) will be approximated by a short polynomial of
// the form
//
//      tan(x)  as  x  +  x * P, where
//           P  =   x^2 * (P2_1 + x^2 * (P2_2 + x^2 * P2_3))
//
// Because |x| <= 2^(-7), tan(B) + x approximates tan(B) + tan(x)
// to a relative accuracy better than 2^(-18). Thus, a good
// initial guess of 1/( tan(B) + tan(x) ) to initiate the iterative
// division is:
//
//      1/(tan(B) + tan(x))      is approximately
//      1/(tan(B) +   x)         is
//      cot(B)/(1 + x*cot(B))    is approximately
//      C_hi / ( 1 + C_hi * x )  is approximately
//
//      C_hi * [ 1 - (C_hi * x) + (C_hi * x)^2 ]
//
// The calculation of -cot(r+c) therefore proceed as follows:
//
//      Cx     := C_hi * x
//      xsq     := x * x
//
//      V_hi     := C_hi*(1 - Cx*(1 - Cx))
//      P     := xsq * (P1_1 + xsq*(P1_2 + xsq*P1_3))
//      ...V_hi serves as an initial guess of 1/(tan(B) + tan(x))
//         ...good to about 18 bits of accuracy
//
//      tanx     := x + x*P
//      D     := T_hi + tanx
//      ...D is a double precision denominator: tan(B) + tan(x)
//
//      V_hi     := V_hi + V_hi*(1 - V_hi*D)
//      ....V_hi approximates 1/(tan(B)+tan(x)) to 40 bits
//
//      V_lo     := V_hi * ( [ (1 - V_hi*T_hi) - V_hi*tanx ]
//                           - V_hi*T_lo )   ...observe all order
//         ...V_hi + V_lo approximates 1/(tan(B) + tan(x))
//      ...to extra accuracy
//
//      ...               SC_inv(B) * (x + x*P)
//      ...  -cot(B) +      ------------------------- + CORR
//         ...                tan(B) + (x + x*P)
//      ...
//      ... =-cot(B) + SC_inv(B)*(x + x*P)*(V_hi + V_lo) + CORR
//      ...
//
//      Sx     := SC_inv * x
//      CORR     := sgn_r * c * SC_inv * C_hi
//
//      ...put the ingredients together to compute
//      ...               SC_inv(B) * (x + x*P)
//      ...  -cot(B) +      ------------------------- + CORR
//         ...                tan(B) + (x + x*P)
//      ...
//      ... =-cot(B) + SC_inv(B)*(x + x*P)*(V_hi + V_lo) + CORR
//      ...
//      ... =-C_hi - C_lo + CORR +
//      ...    Sx * V_hi + Sx * V_lo + Sx * P *(V_hi + V_lo)
//
//      CORR := CORR - C_lo
//      tail := V_lo + P*(V_hi + V_lo)
//         tail := Sx * tail  +  CORR
//      tail := Sx * V_hi  +  tail
//         C_hi := -sgn_r * C_hi
//
//         ...C_hi + sgn_r*tail now approximates
//      ...sgn_r*(-cot(B+x) + CORR) accurately
//
//      Result :=  C_hi + sgn_r*tail   in user-defined rounding control
//      ...It is crucial that independent paths be fully
//      ...exploited for performance's sake.
//
// 3. Implementation Notes
// =======================
//
//   Table entries T_hi, T_lo; C_hi, C_lo; SC_inv
//
//   Recall that 2^(-2) <= |r| <= pi/4;
//
//      r = sgn_r * 2^k * 1.b_1 b_2 ... b_63
//
//   and
//
//        B = 2^k * 1.b_1 b_2 b_3 b_4 b_5 1
//
//   Thus, for k = -2, possible values of B are
//
//          B = 2^(-2) * ( 1 + index/32  +  1/64 ),
//      index ranges from 0 to 31
//
//   For k = -1, however, since |r| <= pi/4 = 0.78...
//   possible values of B are
//
//        B = 2^(-1) * ( 1 + index/32  +  1/64 )
//      index ranges from 0 to 19.
//
//

RODATA
.align 16

LOCAL_OBJECT_START(TANL_BASE_CONSTANTS)

tanl_table_1:
data8    0xA2F9836E4E44152A, 0x00003FFE // two_by_pi
data8    0xC84D32B0CE81B9F1, 0x00004016 // P_0
data8    0xC90FDAA22168C235, 0x00003FFF // P_1
data8    0xECE675D1FC8F8CBB, 0x0000BFBD // P_2
data8    0xB7ED8FBBACC19C60, 0x0000BF7C // P_3
LOCAL_OBJECT_END(TANL_BASE_CONSTANTS)

LOCAL_OBJECT_START(tanl_table_2)
data8    0xC90FDAA22168C234, 0x00003FFE // PI_BY_4
data8    0xA397E5046EC6B45A, 0x00003FE7 // Inv_P_0
data8    0x8D848E89DBD171A1, 0x0000BFBF // d_1
data8    0xD5394C3618A66F8E, 0x0000BF7C // d_2
data4    0x3E800000 // two**-2
data4    0xBE800000 // -two**-2
data4    0x00000000 // pad
data4    0x00000000 // pad
LOCAL_OBJECT_END(tanl_table_2)

LOCAL_OBJECT_START(tanl_table_p1)
data8    0xAAAAAAAAAAAAAABD, 0x00003FFD // P1_1
data8    0x8888888888882E6A, 0x00003FFC // P1_2
data8    0xDD0DD0DD0F0177B6, 0x00003FFA // P1_3
data8    0xB327A440646B8C6D, 0x00003FF9 // P1_4
data8    0x91371B251D5F7D20, 0x00003FF8 // P1_5
data8    0xEB69A5F161C67914, 0x00003FF6 // P1_6
data8    0xBEDD37BE019318D2, 0x00003FF5 // P1_7
data8    0x9979B1463C794015, 0x00003FF4 // P1_8
data8    0x8EBD21A38C6EB58A, 0x00003FF3 // P1_9
LOCAL_OBJECT_END(tanl_table_p1)

LOCAL_OBJECT_START(tanl_table_q1)
data8    0xAAAAAAAAAAAAAAB4, 0x00003FFD // Q1_1
data8    0xB60B60B60B5FC93E, 0x00003FF9 // Q1_2
data8    0x8AB355E00C9BBFBF, 0x00003FF6 // Q1_3
data8    0xDDEBBC89CBEE3D4C, 0x00003FF2 // Q1_4
data8    0xB3548A685F80BBB6, 0x00003FEF // Q1_5
data8    0x913625604CED5BF1, 0x00003FEC // Q1_6
data8    0xF189D95A8EE92A83, 0x00003FE8 // Q1_7
LOCAL_OBJECT_END(tanl_table_q1)

LOCAL_OBJECT_START(tanl_table_p2)
data8    0xAAAAAAAAAAAB362F, 0x00003FFD // P2_1
data8    0x88888886E97A6097, 0x00003FFC // P2_2
data8    0xDD108EE025E716A1, 0x00003FFA // P2_3
LOCAL_OBJECT_END(tanl_table_p2)

LOCAL_OBJECT_START(tanl_table_tm2)
//
//  Entries T_hi   double-precision memory format
//  Index = 0,1,...,31  B = 2^(-2)*(1+Index/32+1/64)
//  Entries T_lo  single-precision memory format
//  Index = 0,1,...,31  B = 2^(-2)*(1+Index/32+1/64)
//
data8 0x3FD09BC362400794
data4 0x23A05C32, 0x00000000
data8 0x3FD124A9DFFBC074
data4 0x240078B2, 0x00000000
data8 0x3FD1AE235BD4920F
data4 0x23826B8E, 0x00000000
data8 0x3FD2383515E2701D
data4 0x22D31154, 0x00000000
data8 0x3FD2C2E463739C2D
data4 0x2265C9E2, 0x00000000
data8 0x3FD34E36AFEEA48B
data4 0x245C05EB, 0x00000000
data8 0x3FD3DA317DBB35D1
data4 0x24749F2D, 0x00000000
data8 0x3FD466DA67321619
data4 0x2462CECE, 0x00000000
data8 0x3FD4F4371F94A4D5
data4 0x246D0DF1, 0x00000000
data8 0x3FD5824D740C3E6D
data4 0x240A85B5, 0x00000000
data8 0x3FD611234CB1E73D
data4 0x23F96E33, 0x00000000
data8 0x3FD6A0BEAD9EA64B
data4 0x247C5393, 0x00000000
data8 0x3FD73125B804FD01
data4 0x241F3B29, 0x00000000
data8 0x3FD7C25EAB53EE83
data4 0x2479989B, 0x00000000
data8 0x3FD8546FE6640EED
data4 0x23B343BC, 0x00000000
data8 0x3FD8E75FE8AF1892
data4 0x241454D1, 0x00000000
data8 0x3FD97B3553928BDA
data4 0x238613D9, 0x00000000
data8 0x3FDA0FF6EB9DE4DE
data4 0x22859FA7, 0x00000000
data8 0x3FDAA5AB99ECF92D
data4 0x237A6D06, 0x00000000
data8 0x3FDB3C5A6D8F1796
data4 0x23952F6C, 0x00000000
data8 0x3FDBD40A9CFB8BE4
data4 0x2280FC95, 0x00000000
data8 0x3FDC6CC387943100
data4 0x245D2EC0, 0x00000000
data8 0x3FDD068CB736C500
data4 0x23C4AD7D, 0x00000000
data8 0x3FDDA16DE1DDBC31
data4 0x23D076E6, 0x00000000
data8 0x3FDE3D6EEB515A93
data4 0x244809A6, 0x00000000
data8 0x3FDEDA97E6E9E5F1
data4 0x220856C8, 0x00000000
data8 0x3FDF78F11963CE69
data4 0x244BE993, 0x00000000
data8 0x3FE00C417D635BCE
data4 0x23D21799, 0x00000000
data8 0x3FE05CAB1C302CD3
data4 0x248A1B1D, 0x00000000
data8 0x3FE0ADB9DB6A1FA0
data4 0x23D53E33, 0x00000000
data8 0x3FE0FF724A20BA81
data4 0x24DB9ED5, 0x00000000
data8 0x3FE151D9153FA6F5
data4 0x24E9E451, 0x00000000
LOCAL_OBJECT_END(tanl_table_tm2)

LOCAL_OBJECT_START(tanl_table_tm1)
//
//  Entries T_hi   double-precision memory format
//  Index = 0,1,...,19  B = 2^(-1)*(1+Index/32+1/64)
//  Entries T_lo  single-precision memory format
//  Index = 0,1,...,19  B = 2^(-1)*(1+Index/32+1/64)
//
data8 0x3FE1CEC4BA1BE39E
data4 0x24B60F9E, 0x00000000
data8 0x3FE277E45ABD9B2D
data4 0x248C2474, 0x00000000
data8 0x3FE324180272B110
data4 0x247B8311, 0x00000000
data8 0x3FE3D38B890E2DF0
data4 0x24C55751, 0x00000000
data8 0x3FE4866D46236871
data4 0x24E5BC34, 0x00000000
data8 0x3FE53CEE45E044B0
data4 0x24001BA4, 0x00000000
data8 0x3FE5F74282EC06E4
data4 0x24B973DC, 0x00000000
data8 0x3FE6B5A125DF43F9
data4 0x24895440, 0x00000000
data8 0x3FE77844CAFD348C
data4 0x240021CA, 0x00000000
data8 0x3FE83F6BCEED6B92
data4 0x24C45372, 0x00000000
data8 0x3FE90B58A34F3665
data4 0x240DAD33, 0x00000000
data8 0x3FE9DC522C1E56B4
data4 0x24F846CE, 0x00000000
data8 0x3FEAB2A427041578
data4 0x2323FB6E, 0x00000000
data8 0x3FEB8E9F9DD8C373
data4 0x24B3090B, 0x00000000
data8 0x3FEC709B65C9AA7B
data4 0x2449F611, 0x00000000
data8 0x3FED58F4ACCF8435
data4 0x23616A7E, 0x00000000
data8 0x3FEE480F97635082
data4 0x24C2FEAE, 0x00000000
data8 0x3FEF3E57F0ACC544
data4 0x242CE964, 0x00000000
data8 0x3FF01E20F7E06E4B
data4 0x2480D3EE, 0x00000000
data8 0x3FF0A1258A798A69
data4 0x24DB8967, 0x00000000
LOCAL_OBJECT_END(tanl_table_tm1)

LOCAL_OBJECT_START(tanl_table_cm2)
//
//  Entries C_hi   double-precision memory format
//  Index = 0,1,...,31  B = 2^(-2)*(1+Index/32+1/64)
//  Entries C_lo  single-precision memory format
//  Index = 0,1,...,31  B = 2^(-2)*(1+Index/32+1/64)
//
data8 0x400ED3E2E63EFBD0
data4 0x259D94D4, 0x00000000
data8 0x400DDDB4C515DAB5
data4 0x245F0537, 0x00000000
data8 0x400CF57ABE19A79F
data4 0x25D4EA9F, 0x00000000
data8 0x400C1A06D15298ED
data4 0x24AE40A0, 0x00000000
data8 0x400B4A4C164B2708
data4 0x25A5AAB6, 0x00000000
data8 0x400A855A5285B068
data4 0x25524F18, 0x00000000
data8 0x4009CA5A3FFA549F
data4 0x24C999C0, 0x00000000
data8 0x4009188A646AF623
data4 0x254FD801, 0x00000000
data8 0x40086F3C6084D0E7
data4 0x2560F5FD, 0x00000000
data8 0x4007CDD2A29A76EE
data4 0x255B9D19, 0x00000000
data8 0x400733BE6C8ECA95
data4 0x25CB021B, 0x00000000
data8 0x4006A07E1F8DDC52
data4 0x24AB4722, 0x00000000
data8 0x4006139BC298AD58
data4 0x252764E2, 0x00000000
data8 0x40058CABBAD7164B
data4 0x24DAF5DB, 0x00000000
data8 0x40050B4BAE31A5D3
data4 0x25EA20F4, 0x00000000
data8 0x40048F2189F85A8A
data4 0x2583A3E8, 0x00000000
data8 0x400417DAA862380D
data4 0x25DCC4CC, 0x00000000
data8 0x4003A52B1088FCFE
data4 0x2430A492, 0x00000000
data8 0x400336CCCD3527D5
data4 0x255F77CF, 0x00000000
data8 0x4002CC7F5760766D
data4 0x25DA0BDA, 0x00000000
data8 0x4002660711CE02E3
data4 0x256FF4A2, 0x00000000
data8 0x4002032CD37BBE04
data4 0x25208AED, 0x00000000
data8 0x4001A3BD7F050775
data4 0x24B72DD6, 0x00000000
data8 0x40014789A554848A
data4 0x24AB4DAA, 0x00000000
data8 0x4000EE65323E81B7
data4 0x2584C440, 0x00000000
data8 0x4000982721CF1293
data4 0x25C9428D, 0x00000000
data8 0x400044A93D415EEB
data4 0x25DC8482, 0x00000000
data8 0x3FFFE78FBD72C577
data4 0x257F5070, 0x00000000
data8 0x3FFF4AC375EFD28E
data4 0x23EBBF7A, 0x00000000
data8 0x3FFEB2AF60B52DDE
data4 0x22EECA07, 0x00000000
data8 0x3FFE1F1935204180
data4 0x24191079, 0x00000000
data8 0x3FFD8FCA54F7E60A
data4 0x248D3058, 0x00000000
LOCAL_OBJECT_END(tanl_table_cm2)

LOCAL_OBJECT_START(tanl_table_cm1)
//
//  Entries C_hi   double-precision memory format
//  Index = 0,1,...,19  B = 2^(-1)*(1+Index/32+1/64)
//  Entries C_lo  single-precision memory format
//  Index = 0,1,...,19  B = 2^(-1)*(1+Index/32+1/64)
//
data8 0x3FFCC06A79F6FADE
data4 0x239C7886, 0x00000000
data8 0x3FFBB91F891662A6
data4 0x250BD191, 0x00000000
data8 0x3FFABFB6529F155D
data4 0x256CC3E6, 0x00000000
data8 0x3FF9D3002E964AE9
data4 0x250843E3, 0x00000000
data8 0x3FF8F1EF89DCB383
data4 0x2277C87E, 0x00000000
data8 0x3FF81B937C87DBD6
data4 0x256DA6CF, 0x00000000
data8 0x3FF74F141042EDE4
data4 0x2573D28A, 0x00000000
data8 0x3FF68BAF1784B360
data4 0x242E489A, 0x00000000
data8 0x3FF5D0B57C923C4C
data4 0x2532D940, 0x00000000
data8 0x3FF51D88F418EF20
data4 0x253C7DD6, 0x00000000
data8 0x3FF4719A02F88DAE
data4 0x23DB59BF, 0x00000000
data8 0x3FF3CC6649DA0788
data4 0x252B4756, 0x00000000
data8 0x3FF32D770B980DB8
data4 0x23FE585F, 0x00000000
data8 0x3FF2945FE56C987A
data4 0x25378A63, 0x00000000
data8 0x3FF200BDB16523F6
data4 0x247BB2E0, 0x00000000
data8 0x3FF172358CE27778
data4 0x24446538, 0x00000000
data8 0x3FF0E873FDEFE692
data4 0x2514638F, 0x00000000
data8 0x3FF0632C33154062
data4 0x24A7FC27, 0x00000000
data8 0x3FEFC42EB3EF115F
data4 0x248FD0FE, 0x00000000
data8 0x3FEEC9E8135D26F6
data4 0x2385C719, 0x00000000
LOCAL_OBJECT_END(tanl_table_cm1)

LOCAL_OBJECT_START(tanl_table_scim2)
//
//  Entries SC_inv in Swapped IEEE format (extended)
//  Index = 0,1,...,31  B = 2^(-2)*(1+Index/32+1/64)
//
data8    0x839D6D4A1BF30C9E, 0x00004001
data8    0x80092804554B0EB0, 0x00004001
data8    0xF959F94CA1CF0DE9, 0x00004000
data8    0xF3086BA077378677, 0x00004000
data8    0xED154515CCD4723C, 0x00004000
data8    0xE77909441C27CF25, 0x00004000
data8    0xE22D037D8DDACB88, 0x00004000
data8    0xDD2B2D8A89C73522, 0x00004000
data8    0xD86E1A23BB2C1171, 0x00004000
data8    0xD3F0E288DFF5E0F9, 0x00004000
data8    0xCFAF16B1283BEBD5, 0x00004000
data8    0xCBA4AFAA0D88DD53, 0x00004000
data8    0xC7CE03CCCA67C43D, 0x00004000
data8    0xC427BC820CA0DDB0, 0x00004000
data8    0xC0AECD57F13D8CAB, 0x00004000
data8    0xBD606C3871ECE6B1, 0x00004000
data8    0xBA3A0A96A44C4929, 0x00004000
data8    0xB7394F6FE5CCCEC1, 0x00004000
data8    0xB45C12039637D8BC, 0x00004000
data8    0xB1A0552892CB051B, 0x00004000
data8    0xAF04432B6BA2FFD0, 0x00004000
data8    0xAC862A237221235F, 0x00004000
data8    0xAA2478AF5F00A9D1, 0x00004000
data8    0xA7DDBB0C81E082BF, 0x00004000
data8    0xA5B0987D45684FEE, 0x00004000
data8    0xA39BD0F5627A8F53, 0x00004000
data8    0xA19E3B036EC5C8B0, 0x00004000
data8    0x9FB6C1F091CD7C66, 0x00004000
data8    0x9DE464101FA3DF8A, 0x00004000
data8    0x9C263139A8F6B888, 0x00004000
data8    0x9A7B4968C27B0450, 0x00004000
data8    0x98E2DB7E5EE614EE, 0x00004000
LOCAL_OBJECT_END(tanl_table_scim2)

LOCAL_OBJECT_START(tanl_table_scim1)
//
//  Entries SC_inv in Swapped IEEE format (extended)
//  Index = 0,1,...,19  B = 2^(-1)*(1+Index/32+1/64)
//
data8    0x969F335C13B2B5BA, 0x00004000
data8    0x93D446D9D4C0F548, 0x00004000
data8    0x9147094F61B798AF, 0x00004000
data8    0x8EF317CC758787AC, 0x00004000
data8    0x8CD498B3B99EEFDB, 0x00004000
data8    0x8AE82A7DDFF8BC37, 0x00004000
data8    0x892AD546E3C55D42, 0x00004000
data8    0x8799FEA9D15573C1, 0x00004000
data8    0x86335F88435A4B4C, 0x00004000
data8    0x84F4FB6E3E93A87B, 0x00004000
data8    0x83DD195280A382FB, 0x00004000
data8    0x82EA3D7FA4CB8C9E, 0x00004000
data8    0x821B247C6861D0A8, 0x00004000
data8    0x816EBED163E8D244, 0x00004000
data8    0x80E42D9127E4CFC6, 0x00004000
data8    0x807ABF8D28E64AFD, 0x00004000
data8    0x8031EF26863B4FD8, 0x00004000
data8    0x800960ADAE8C11FD, 0x00004000
data8    0x8000E1475FDBEC21, 0x00004000
data8    0x80186650A07791FA, 0x00004000
LOCAL_OBJECT_END(tanl_table_scim1)

Arg                 = f8
Save_Norm_Arg       = f8        // For input to reduction routine
Result              = f8
r                   = f8        // For output from reduction routine
c                   = f9        // For output from reduction routine
U_2                 = f10
rsq                 = f11
C_hi                = f12
C_lo                = f13
T_hi                = f14
T_lo                = f15

d_1                 = f33
N_0                 = f34
tail                = f35
tanx                = f36
Cx                  = f37
Sx                  = f38
sgn_r               = f39
CORR                = f40
P                   = f41
D                   = f42
ArgPrime            = f43
P_0                 = f44

P2_1                = f45
P2_2                = f46
P2_3                = f47

P1_1                = f45
P1_2                = f46
P1_3                = f47

P1_4                = f48
P1_5                = f49
P1_6                = f50
P1_7                = f51
P1_8                = f52
P1_9                = f53

x                   = f56
xsq                 = f57
Tx                  = f58
Tx1                 = f59
Set                 = f60
poly1               = f61
poly2               = f62
Poly                = f63
Poly1               = f64
Poly2               = f65
r_to_the_8          = f66
B                   = f67
SC_inv              = f68
Pos_r               = f69
N_0_fix             = f70
d_2                 = f71
PI_BY_4             = f72
TWO_TO_NEG14        = f74
TWO_TO_NEG33        = f75
NEGTWO_TO_NEG14     = f76
NEGTWO_TO_NEG33     = f77
two_by_PI           = f78
N                   = f79
N_fix               = f80
P_1                 = f81
P_2                 = f82
P_3                 = f83
s_val               = f84
w                   = f85
B_mask1             = f86
B_mask2             = f87
w2                  = f88
A                   = f89
a                   = f90
t                   = f91
U_1                 = f92
NEGTWO_TO_NEG2      = f93
TWO_TO_NEG2         = f94
Q1_1                = f95
Q1_2                = f96
Q1_3                = f97
Q1_4                = f98
Q1_5                = f99
Q1_6                = f100
Q1_7                = f101
Q1_8                = f102
S_hi                = f103
S_lo                = f104
V_hi                = f105
V_lo                = f106
U_hi                = f107
U_lo                = f108
U_hiabs             = f109
V_hiabs             = f110
V                   = f111
Inv_P_0             = f112

FR_inv_pi_2to63     = f113
FR_rshf_2to64       = f114
FR_2tom64           = f115
FR_rshf             = f116
Norm_Arg            = f117
Abs_Arg             = f118
TWO_TO_NEG65        = f119
fp_tmp              = f120
mOne                = f121

GR_SAVE_B0     = r33
GR_SAVE_GP     = r34
GR_SAVE_PFS    = r35
table_base     = r36
table_ptr1     = r37
table_ptr2     = r38
table_ptr3     = r39
lookup         = r40
N_fix_gr       = r41
GR_exp_2tom2   = r42
GR_exp_2tom65  = r43
exp_r          = r44
sig_r          = r45
bmask1         = r46
table_offset   = r47
bmask2         = r48
gr_tmp         = r49
cot_flag       = r50

GR_sig_inv_pi  = r51
GR_rshf_2to64  = r52
GR_exp_2tom64  = r53
GR_rshf        = r54
GR_exp_2_to_63 = r55
GR_exp_2_to_24 = r56
GR_signexp_x   = r57
GR_exp_x       = r58
GR_exp_mask    = r59
GR_exp_2tom14  = r60
GR_exp_m2tom14 = r61
GR_exp_2tom33  = r62
GR_exp_m2tom33 = r63

GR_SAVE_B0                  = r64
GR_SAVE_PFS                 = r65
GR_SAVE_GP                  = r66

GR_Parameter_X              = r67
GR_Parameter_Y              = r68
GR_Parameter_RESULT         = r69
GR_Parameter_Tag            = r70


.section .text
.global __libm_tanl#
.global __libm_cotl#

.proc __libm_cotl#
__libm_cotl:
.endp __libm_cotl#
LOCAL_LIBM_ENTRY(cotl)

{ .mlx
      alloc r32 = ar.pfs, 0,35,4,0
      movl GR_sig_inv_pi = 0xa2f9836e4e44152a // significand of 1/pi
}
{ .mlx
      mov GR_exp_mask = 0x1ffff            // Exponent mask
      movl GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+64)
}
;;

//     Check for NatVals, Infs , NaNs, and Zeros
{ .mfi
      getf.exp GR_signexp_x = Arg          // Get sign and exponent of x
      fclass.m  p6,p0 = Arg, 0x1E7         // Test for natval, nan, inf, zero
      mov cot_flag = 0x1
}
{ .mfb
      addl table_base = @ltoff(TANL_BASE_CONSTANTS), gp // Pointer to table ptr
      fnorm.s1 Norm_Arg = Arg              // Normalize x
      br.cond.sptk COMMON_PATH
};;

LOCAL_LIBM_END(cotl)


.proc __libm_tanl#
__libm_tanl:
.endp __libm_tanl#
GLOBAL_IEEE754_ENTRY(tanl)

{ .mlx
      alloc r32 = ar.pfs, 0,35,4,0
      movl GR_sig_inv_pi = 0xa2f9836e4e44152a // significand of 1/pi
}
{ .mlx
      mov GR_exp_mask = 0x1ffff            // Exponent mask
      movl GR_rshf_2to64 = 0x47e8000000000000 // 1.1000 2^(63+64)
}
;;

//     Check for NatVals, Infs , NaNs, and Zeros
{ .mfi
      getf.exp GR_signexp_x = Arg          // Get sign and exponent of x
      fclass.m  p6,p0 = Arg, 0x1E7         // Test for natval, nan, inf, zero
      mov cot_flag = 0x0
}
{ .mfi
      addl table_base = @ltoff(TANL_BASE_CONSTANTS), gp // Pointer to table ptr
      fnorm.s1 Norm_Arg = Arg              // Normalize x
      nop.i 0
};;

// Common path for both tanl and cotl
COMMON_PATH:
{ .mfi
      setf.sig FR_inv_pi_2to63 = GR_sig_inv_pi // Form 1/pi * 2^63
      fclass.m p9, p0 = Arg, 0x0b          // Test x denormal
      mov GR_exp_2tom64 = 0xffff - 64      // Scaling constant to compute N
}
{ .mlx
      setf.d FR_rshf_2to64 = GR_rshf_2to64 // Form const 1.1000 * 2^(63+64)
      movl GR_rshf = 0x43e8000000000000    // Form const 1.1000 * 2^63
}
;;

// Check for everything - if false, then must be pseudo-zero or pseudo-nan.
// Branch out to deal with special values.
{ .mfi
      addl gr_tmp = -1,r0
      fclass.nm  p7,p0 = Arg, 0x1FF        // Test x unsupported
      mov GR_exp_2_to_63 = 0xffff + 63     // Exponent of 2^63
}
{ .mfb
      ld8 table_base = [table_base]        // Get pointer to constant table
      fms.s1 mOne = f0, f0, f1
(p6)  br.cond.spnt TANL_SPECIAL            // Branch if x natval, nan, inf, zero
}
;;

{ .mmb
      setf.sig fp_tmp = gr_tmp   // Make a constant so fmpy produces inexact
      mov GR_exp_2_to_24 = 0xffff + 24     // Exponent of 2^24
(p9)  br.cond.spnt TANL_DENORMAL           // Branch if x denormal
}
;;

TANL_COMMON:
// Return to here if x denormal
//
// Do fcmp to generate Denormal exception
//  - can't do FNORM (will generate Underflow when U is unmasked!)
// Branch out to deal with unsupporteds values.
{ .mfi
      setf.exp FR_2tom64 = GR_exp_2tom64 // Form 2^-64 for scaling N_float
      fcmp.eq.s0 p0, p6 = Arg, f1        // Dummy to flag denormals
      add table_ptr1 = 0, table_base     // Point to tanl_table_1
}
{ .mib
      setf.d FR_rshf = GR_rshf           // Form right shift const 1.1000 * 2^63
      add table_ptr2 = 80, table_base    // Point to tanl_table_2
(p7)  br.cond.spnt TANL_UNSUPPORTED      // Branch if x unsupported type
}
;;

{ .mfi
      and GR_exp_x = GR_exp_mask, GR_signexp_x // Get exponent of x
      fmpy.s1 Save_Norm_Arg = Norm_Arg, f1     // Save x if large arg reduction
      dep.z bmask1 = 0x7c, 56, 8               // Form mask to get 5 msb of r
                                               // bmask1 = 0x7c00000000000000
}
;;

//
//     Decide about the paths to take:
//     Set PR_6 if |Arg| >= 2**63
//     Set PR_9 if |Arg| < 2**24 - CASE 1 OR 2
//     OTHERWISE Set PR_8 - CASE 3 OR 4
//
//     Branch out if the magnitude of the input argument is >= 2^63
//     - do this branch before the next.
{ .mfi
      ldfe two_by_PI = [table_ptr1],16        // Load 2/pi
      nop.f 999
      dep.z bmask2 = 0x41, 57, 7              // Form mask to OR to produce B
                                              // bmask2 = 0x8200000000000000
}
{ .mib
      ldfe PI_BY_4 = [table_ptr2],16          // Load pi/4
      cmp.ge p6,p0 = GR_exp_x, GR_exp_2_to_63 // Is |x| >= 2^63
(p6)  br.cond.spnt TANL_ARG_TOO_LARGE         // Branch if |x| >= 2^63
}
;;

{ .mmi
      ldfe P_0 = [table_ptr1],16              // Load P_0
      ldfe Inv_P_0 = [table_ptr2],16          // Load Inv_P_0
      nop.i 999
}
;;

{ .mfi
      ldfe P_1 = [table_ptr1],16              // Load P_1
      fmerge.s Abs_Arg = f0, Norm_Arg         // Get |x|
      mov GR_exp_m2tom33 = 0x2ffff - 33       // Form signexp of -2^-33
}
{ .mfi
      ldfe d_1 = [table_ptr2],16              // Load d_1 for 2^24 <= |x| < 2^63
      nop.f 999
      mov GR_exp_2tom33 = 0xffff - 33         // Form signexp of 2^-33
}
;;

{ .mmi
      ldfe P_2 = [table_ptr1],16              // Load P_2
      ldfe d_2 = [table_ptr2],16              // Load d_2 for 2^24 <= |x| < 2^63
      cmp.ge p8,p0 = GR_exp_x, GR_exp_2_to_24 // Is |x| >= 2^24
}
;;

// Use special scaling to right shift so N=Arg * 2/pi is in rightmost bits
// Branch to Cases 3 or 4 if Arg <= -2**24 or Arg >= 2**24
{ .mfb
      ldfe   P_3 = [table_ptr1],16            // Load P_3
      fma.s1      N_fix = Norm_Arg, FR_inv_pi_2to63, FR_rshf_2to64
(p8)  br.cond.spnt TANL_LARGER_ARG            // Branch if 2^24 <= |x| < 2^63
}
;;

// Here if 0 < |x| < 2^24
//     ARGUMENT REDUCTION CODE - CASE 1 and 2
//
{ .mmf
      setf.exp TWO_TO_NEG33 = GR_exp_2tom33      // Form 2^-33
      setf.exp NEGTWO_TO_NEG33 = GR_exp_m2tom33  // Form -2^-33
      fmerge.s r = Norm_Arg,Norm_Arg          // Assume r=x, ok if |x| < pi/4
}
;;

//
// If |Arg| < pi/4,  set PR_8, else  pi/4 <=|Arg| < 2^24 - set PR_9.
//
//     Case 2: Convert integer N_fix back to normalized floating-point value.
{ .mfi
      getf.sig sig_r = Norm_Arg               // Get sig_r if 1/4 <= |x| < pi/4
      fcmp.lt.s1 p8,p9= Abs_Arg,PI_BY_4       // Test |x| < pi/4
      mov GR_exp_2tom2 = 0xffff - 2           // Form signexp of 2^-2
}
{ .mfi
      ldfps TWO_TO_NEG2, NEGTWO_TO_NEG2 = [table_ptr2] // Load 2^-2, -2^-2
      fms.s1 N = N_fix, FR_2tom64, FR_rshf    // Use scaling to get N floated
      mov N_fix_gr = r0                       // Assume N=0, ok if |x| < pi/4
}
;;

//
//     Case 1: Is |r| < 2**(-2).
//     Arg is the same as r in this case.
//     r = Arg
//     c = 0
//
//     Case 2: Place integer part of N in GP register.
{ .mfi
(p9)  getf.sig N_fix_gr = N_fix
      fmerge.s c = f0, f0                     // Assume c=0, ok if |x| < pi/4
      cmp.lt p10, p0 = GR_exp_x, GR_exp_2tom2 // Test if |x| < 1/4
}
;;

{ .mfi
      setf.sig B_mask1 = bmask1               // Form mask to get 5 msb of r
      nop.f 999
      mov exp_r = GR_exp_x                    // Get exp_r if 1/4 <= |x| < pi/4
}
{ .mbb
      setf.sig B_mask2 = bmask2               // Form mask to form B from r
(p10) br.cond.spnt TANL_SMALL_R               // Branch if 0 < |x| < 1/4
(p8)  br.cond.spnt TANL_NORMAL_R              // Branch if 1/4 <= |x| < pi/4
}
;;

// Here if pi/4 <= |x| < 2^24
//
//     Case 1: PR_3 is only affected  when PR_1 is set.
//
//
//     Case 2: w = N * P_2
//     Case 2: s_val = -N * P_1  + Arg
//

{ .mfi
      nop.m 999
      fnma.s1 s_val = N, P_1, Norm_Arg
      nop.i 999
}
{ .mfi
      nop.m 999
      fmpy.s1 w = N, P_2                     // w = N * P_2 for |s| >= 2^-33
      nop.i 999
}
;;

//     Case 2_reduce: w = N * P_3 (change sign)
{ .mfi
      nop.m 999
      fmpy.s1 w2 = N, P_3                    // w = N * P_3 for |s| < 2^-33
      nop.i 999
}
;;

//     Case 1_reduce: r = s + w (change sign)
{ .mfi
      nop.m 999
      fsub.s1 r = s_val, w                   // r = s_val - w for |s| >= 2^-33
      nop.i 999
}
;;

//     Case 2_reduce: U_1 = N * P_2 + w
{ .mfi
      nop.m 999
      fma.s1  U_1 = N, P_2, w2              // U_1 = N * P_2 + w for |s| < 2^-33
      nop.i 999
}
;;

//
//     Decide between case_1 and case_2 reduce:
//     Case 1_reduce:  |s| >= 2**(-33)
//     Case 2_reduce:  |s| < 2**(-33)
//
{ .mfi
      nop.m 999
      fcmp.lt.s1 p9, p8 = s_val, TWO_TO_NEG33
      nop.i 999
}
;;

{ .mfi
      nop.m 999
(p9)  fcmp.gt.s1 p9, p8 = s_val, NEGTWO_TO_NEG33
      nop.i 999
}
;;

//     Case 1_reduce: c = s - r
{ .mfi
      nop.m 999
      fsub.s1 c = s_val, r                     // c = s_val - r for |s| >= 2^-33
      nop.i 999
}
;;

//     Case 2_reduce: r is complete here - continue to calculate c .
//     r = s - U_1
{ .mfi
      nop.m 999
(p9)  fsub.s1 r = s_val, U_1
      nop.i 999
}
{ .mfi
      nop.m 999
(p9)  fms.s1 U_2 = N, P_2, U_1
      nop.i 999
}
;;

//
//     Case 1_reduce: Is |r| < 2**(-2), if so set PR_10
//     else set PR_13.
//

{ .mfi
      nop.m 999
      fand B = B_mask1, r
      nop.i 999
}
{ .mfi
      nop.m 999
(p8)  fcmp.lt.unc.s1 p10, p13 = r, TWO_TO_NEG2
      nop.i 999
}
;;

{ .mfi
(p8)  getf.sig sig_r = r               // Get signif of r if |s| >= 2^-33
      nop.f 999
      nop.i 999
}
;;

{ .mfi
(p8)  getf.exp exp_r = r               // Extract signexp of r if |s| >= 2^-33
(p10) fcmp.gt.s1 p10, p13 = r, NEGTWO_TO_NEG2
      nop.i 999
}
;;

//     Case 1_reduce: c is complete here.
//     Case 1: Branch to SMALL_R or NORMAL_R.
//     c = c + w (w has not been negated.)
{ .mfi
      nop.m 999
(p8)  fsub.s1 c = c, w                         // c = c - w for |s| >= 2^-33
      nop.i 999
}
{ .mbb
      nop.m 999
(p10) br.cond.spnt TANL_SMALL_R     // Branch if pi/4 < |x| < 2^24 and |r|<1/4
(p13) br.cond.sptk TANL_NORMAL_R_A  // Branch if pi/4 < |x| < 2^24 and |r|>=1/4
}
;;


// Here if pi/4 < |x| < 2^24 and |s| < 2^-33
//
//     Is i_1 = lsb of N_fix_gr even or odd?
//     if i_1 == 0, set p11, else set p12.
//
{ .mfi
      nop.m 999
      fsub.s1 s_val = s_val, r
      add N_fix_gr = N_fix_gr, cot_flag // N = N + 1 (for cotl)
}
{ .mfi
      nop.m 999
//
//     Case 2_reduce:
//     U_2 = N * P_2 - U_1
//     Not needed until later.
//
      fadd.s1 U_2 = U_2, w2
//
//     Case 2_reduce:
//     s = s - r
//     U_2 = U_2 + w
//
      nop.i 999
}
;;

//
//     Case 2_reduce:
//     c = c - U_2
//     c is complete here
//     Argument reduction ends here.
//
{ .mfi
      nop.m 999
      fmpy.s1 rsq = r, r
      tbit.z p11, p12 = N_fix_gr, 0 ;;    // Set p11 if N even, p12 if odd
}

{ .mfi
      nop.m 999
(p12) frcpa.s1 S_hi,p0 = f1, r
      nop.i 999
}
{ .mfi
      nop.m 999
      fsub.s1 c = s_val, U_1
      nop.i 999
}
;;

{ .mmi
      add table_ptr1 = 160, table_base ;;  // Point to tanl_table_p1
      ldfe P1_1 = [table_ptr1],144
      nop.i 999 ;;
}
//
//     Load P1_1 and point to Q1_1 .
//
{ .mfi
      ldfe Q1_1 = [table_ptr1]
//
//     N even: rsq = r * Z
//     N odd:  S_hi = frcpa(r)
//
(p12) fmerge.ns S_hi = S_hi, S_hi
      nop.i 999
}
{ .mfi
      nop.m 999
//
//     Case 2_reduce:
//     c = s - U_1
//
(p9)  fsub.s1 c = c, U_2
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
(p12) fma.s1  poly1 = S_hi, r, f1
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//     N odd:  Change sign of S_hi
//
(p11) fmpy.s1 rsq = rsq, P1_1
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//     N even: rsq = rsq * P1_1
//     N odd:  poly1 =  1.0 +  S_hi * r    16 bits partial  account for necessary
//
(p11) fma.s1 Poly = r, rsq, c
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//     N even: Poly = c  + r * rsq
//     N odd:  S_hi  = S_hi + S_hi*poly1  16 bits account for necessary
//
(p12) fma.s1 poly1 = S_hi, r, f1
(p11) tbit.z.unc p14, p15 = cot_flag, 0 ;; // p14=1 for tanl; p15=1 for cotl
}
{ .mfi
      nop.m 999
//
//     N even: Result = Poly + r
//     N odd:  poly1  = 1.0 + S_hi * r        32 bits partial
//
(p14) fadd.s0 Result = r, Poly             // for tanl
      nop.i 999
}
{ .mfi
      nop.m 999
(p15) fms.s0 Result = r, mOne, Poly        // for cotl
      nop.i 999
}
;;

{ .mfi
      nop.m 999
(p12) fma.s1  S_hi = S_hi, poly1, S_hi
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//     N even: Result1 = Result + r
//     N odd:   S_hi  = S_hi * poly1 + S_hi   32 bits
//
(p12) fma.s1 poly1 = S_hi, r, f1
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//     N odd:  poly1  =  S_hi * r + 1.0       64 bits partial
//
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//     N odd:  poly1  =  S_hi * poly + 1.0    64 bits
//
(p12) fma.s1 poly1 = S_hi, r, f1
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//     N odd:  poly1  =  S_hi * r + 1.0
//
(p12) fma.s1 poly1 = S_hi, c, poly1
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//     N odd:  poly1  =  S_hi * c + poly1
//
(p12) fmpy.s1 S_lo = S_hi, poly1
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//     N odd:  S_lo  =  S_hi *  poly1
//
(p12) fma.s1 S_lo = Q1_1, r, S_lo
(p12) tbit.z.unc p14, p15 = cot_flag, 0 // p14=1 for tanl; p15=1 for cotl
}
{ .mfi
      nop.m 999
//
//     N odd:  Result =  S_hi + S_lo
//
      fmpy.s0 fp_tmp = fp_tmp, fp_tmp  // Dummy mult to set inexact
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//     N odd:  S_lo  =  S_lo + Q1_1 * r
//
(p14) fadd.s0 Result = S_hi, S_lo          // for tanl
      nop.i 999
}
{ .mfb
      nop.m 999
(p15) fms.s0 Result = S_hi, mOne, S_lo     // for cotl
      br.ret.sptk b0 ;;          // Exit for pi/4 <= |x| < 2^24 and |s| < 2^-33
}


TANL_LARGER_ARG:
// Here if 2^24 <= |x| < 2^63
//
// ARGUMENT REDUCTION CODE - CASE 3 and 4
//

{ .mmf
      mov GR_exp_2tom14 = 0xffff - 14          // Form signexp of 2^-14
      mov GR_exp_m2tom14 = 0x2ffff - 14        // Form signexp of -2^-14
      fmpy.s1 N_0 = Norm_Arg, Inv_P_0
}
;;

{ .mmi
      setf.exp TWO_TO_NEG14 = GR_exp_2tom14    // Form 2^-14
      setf.exp NEGTWO_TO_NEG14 = GR_exp_m2tom14// Form -2^-14
      nop.i 999
}
;;


//
//    Adjust table_ptr1 to beginning of table.
//    N_0 = Arg * Inv_P_0
//
{ .mmi
      add table_ptr2 = 144, table_base ;;     // Point to 2^-2
      ldfps TWO_TO_NEG2, NEGTWO_TO_NEG2 = [table_ptr2]
      nop.i 999
}
;;

//
//    N_0_fix  = integer part of N_0 .
//
//
//    Make N_0 the integer part.
//
{ .mfi
      nop.m 999
      fcvt.fx.s1 N_0_fix = N_0
      nop.i 999 ;;
}
{ .mfi
      setf.sig B_mask1 = bmask1               // Form mask to get 5 msb of r
      fcvt.xf N_0 = N_0_fix
      nop.i 999 ;;
}
{ .mfi
      setf.sig B_mask2 = bmask2               // Form mask to form B from r
      fnma.s1 ArgPrime = N_0, P_0, Norm_Arg
      nop.i 999
}
{ .mfi
      nop.m 999
      fmpy.s1 w = N_0, d_1
      nop.i 999 ;;
}
//
//    ArgPrime = -N_0 * P_0 + Arg
//    w  = N_0 * d_1
//
//
//    N = ArgPrime * 2/pi
//
//      fcvt.fx.s1 N_fix = N
// Use special scaling to right shift so N=Arg * 2/pi is in rightmost bits
// Branch to Cases 3 or 4 if Arg <= -2**24 or Arg >= 2**24
{ .mfi
      nop.m 999
      fma.s1      N_fix = ArgPrime, FR_inv_pi_2to63, FR_rshf_2to64

      nop.i 999 ;;
}
//     Convert integer N_fix back to normalized floating-point value.
{ .mfi
      nop.m 999
      fms.s1 N = N_fix, FR_2tom64, FR_rshf    // Use scaling to get N floated
      nop.i 999
}
;;

//
//    N is the integer part of the reduced-reduced argument.
//    Put the integer in a GP register.
//
{ .mfi
      getf.sig N_fix_gr = N_fix
      nop.f 999
      nop.i 999
}
;;

//
//    s_val = -N*P_1 + ArgPrime
//    w = -N*P_2 + w
//
{ .mfi
      nop.m 999
      fnma.s1 s_val = N, P_1, ArgPrime
      nop.i 999
}
{ .mfi
      nop.m 999
      fnma.s1 w = N, P_2, w
      nop.i 999
}
;;

//    Case 4: V_hi = N * P_2
//    Case 4: U_hi = N_0 * d_1
{ .mfi
      nop.m 999
      fmpy.s1 V_hi = N, P_2               // V_hi = N * P_2 for |s| < 2^-14
      nop.i 999
}
{ .mfi
      nop.m 999
      fmpy.s1 U_hi = N_0, d_1             // U_hi = N_0 * d_1 for |s| < 2^-14
      nop.i 999
}
;;

//    Case 3: r = s_val + w (Z complete)
//    Case 4: w = N * P_3
{ .mfi
      nop.m 999
      fadd.s1 r = s_val, w                // r = s_val + w for |s| >= 2^-14
      nop.i 999
}
{ .mfi
      nop.m 999
      fmpy.s1 w2 = N, P_3                 // w = N * P_3 for |s| < 2^-14
      nop.i 999
}
;;

//    Case 4: A =  U_hi + V_hi
//    Note: Worry about switched sign of V_hi, so subtract instead of add.
//    Case 4: V_lo = -N * P_2 - V_hi (U_hi is in place of V_hi in writeup)
//    Note: the (-) is still missing for V_hi.
{ .mfi
      nop.m 999
      fsub.s1 A = U_hi, V_hi           // A = U_hi - V_hi for |s| < 2^-14
      nop.i 999
}
{ .mfi
      nop.m 999
      fnma.s1 V_lo = N, P_2, V_hi      // V_lo = V_hi - N * P_2 for |s| < 2^-14
      nop.i 999
}
;;

//    Decide between case 3 and 4:
//    Case 3:  |s| >= 2**(-14)     Set p10
//    Case 4:  |s| <  2**(-14)     Set p11
//
//    Case 4: U_lo = N_0 * d_1 - U_hi
{ .mfi
      nop.m 999
      fms.s1 U_lo = N_0, d_1, U_hi     // U_lo = N_0*d_1 - U_hi for |s| < 2^-14
      nop.i 999
}
{ .mfi
      nop.m 999
      fcmp.lt.s1 p11, p10 = s_val, TWO_TO_NEG14
      nop.i 999
}
;;

//    Case 4: We need abs of both U_hi and V_hi - dont
//    worry about switched sign of V_hi.
{ .mfi
      nop.m 999
      fabs V_hiabs = V_hi              // |V_hi| for |s| < 2^-14
      nop.i 999
}
{ .mfi
      nop.m 999
(p11) fcmp.gt.s1 p11, p10 = s_val, NEGTWO_TO_NEG14
      nop.i 999
}
;;

//    Case 3: c = s_val - r
{ .mfi
      nop.m 999
      fabs U_hiabs = U_hi              // |U_hi| for |s| < 2^-14
      nop.i 999
}
{ .mfi
      nop.m 999
      fsub.s1 c = s_val, r             // c = s_val - r    for |s| >= 2^-14
      nop.i 999
}
;;

// For Case 3, |s| >= 2^-14, determine if |r| < 1/4
//
//    Case 4: C_hi = s_val + A
//
{ .mfi
      nop.m 999
(p11) fadd.s1 C_hi = s_val, A              // C_hi = s_val + A for |s| < 2^-14
      nop.i 999
}
{ .mfi
      nop.m 999
(p10) fcmp.lt.unc.s1 p14, p15 = r, TWO_TO_NEG2
      nop.i 999
}
;;

{ .mfi
      getf.sig sig_r = r               // Get signif of r if |s| >= 2^-33
      fand B = B_mask1, r
      nop.i 999
}
;;

//    Case 4: t = U_lo + V_lo
{ .mfi
      getf.exp exp_r = r               // Extract signexp of r if |s| >= 2^-33
(p11) fadd.s1 t = U_lo, V_lo               // t = U_lo + V_lo for |s| < 2^-14
      nop.i 999
}
{ .mfi
      nop.m 999
(p14) fcmp.gt.s1 p14, p15 = r, NEGTWO_TO_NEG2
      nop.i 999
}
;;

//    Case 3: c = (s - r) + w (c complete)
{ .mfi
      nop.m 999
(p10) fadd.s1 c = c, w              // c = c + w for |s| >= 2^-14
      nop.i 999
}
{ .mbb
      nop.m 999
(p14) br.cond.spnt TANL_SMALL_R     // Branch if 2^24 <= |x| < 2^63 and |r|< 1/4
(p15) br.cond.sptk TANL_NORMAL_R_A  // Branch if 2^24 <= |x| < 2^63 and |r|>=1/4
}
;;


// Here if 2^24 <= |x| < 2^63 and |s| < 2^-14  >>>>>>>  Case 4.
//
//    Case 4: Set P_12 if U_hiabs >= V_hiabs
//    Case 4: w = w + N_0 * d_2
//    Note: the (-) is now incorporated in w .
{ .mfi
      add table_ptr1 = 160, table_base           // Point to tanl_table_p1
      fcmp.ge.unc.s1 p12, p13 = U_hiabs, V_hiabs
      nop.i 999
}
{ .mfi
      nop.m 999
      fms.s1 w2 = N_0, d_2, w2
      nop.i 999
}
;;

//    Case 4: C_lo = s_val - C_hi
{ .mfi
      ldfe P1_1 = [table_ptr1], 16               // Load P1_1
      fsub.s1 C_lo = s_val, C_hi
      nop.i 999
}
;;

//
//    Case 4: a = U_hi - A
//            a = V_hi - A (do an add to account for missing (-) on V_hi
//
{ .mfi
      ldfe P1_2 = [table_ptr1], 128              // Load P1_2
(p12) fsub.s1 a = U_hi, A
      nop.i 999
}
{ .mfi
      nop.m 999
(p13) fadd.s1 a = V_hi, A
      nop.i 999
}
;;

//    Case 4: t = U_lo + V_lo  + w
{ .mfi
      ldfe Q1_1 = [table_ptr1], 16               // Load Q1_1
      fadd.s1 t = t, w2
      nop.i 999
}
;;

//    Case 4: a = (U_hi - A)  + V_hi
//            a = (V_hi - A)  + U_hi
//    In each case account for negative missing form V_hi .
//
{ .mfi
      ldfe Q1_2 = [table_ptr1], 16               // Load Q1_2
(p12) fsub.s1 a = a, V_hi
      nop.i 999
}
{ .mfi
      nop.m 999
(p13) fsub.s1 a = U_hi, a
      nop.i 999
}
;;

//
//    Case 4: C_lo = (s_val - C_hi) + A
//
{ .mfi
      nop.m 999
      fadd.s1 C_lo = C_lo, A
      nop.i 999 ;;
}
//
//    Case 4: t = t + a
//
{ .mfi
      nop.m 999
      fadd.s1 t = t, a
      nop.i 999
}
;;

//    Case 4: C_lo = C_lo + t
//    Case 4: r = C_hi + C_lo
{ .mfi
      nop.m 999
      fadd.s1 C_lo = C_lo, t
      nop.i 999
}
;;

{ .mfi
      nop.m 999
      fadd.s1 r = C_hi, C_lo
      nop.i 999
}
;;

//
//    Case 4: c = C_hi - r
//
{ .mfi
      nop.m 999
      fsub.s1 c = C_hi, r
      nop.i 999
}
{ .mfi
      nop.m 999
      fmpy.s1 rsq = r, r
      add N_fix_gr = N_fix_gr, cot_flag // N = N + 1 (for cotl)
}
;;

//    Case 4: c = c + C_lo  finished.
//
//    Is i_1 = lsb of N_fix_gr even or odd?
//    if i_1 == 0, set PR_11, else set PR_12.
//
{ .mfi
      nop.m 999
      fadd.s1 c = c , C_lo
      tbit.z p11, p12 =  N_fix_gr, 0
}
;;

// r and c have been computed.
{ .mfi
      nop.m 999
(p12) frcpa.s1 S_hi, p0 = f1, r
      nop.i 999
}
{ .mfi
      nop.m 999
//
//    N odd: Change sign of S_hi
//
(p11) fma.s1 Poly = rsq, P1_2, P1_1
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
(p12) fma.s1 P = rsq, Q1_2, Q1_1
      nop.i 999
}
{ .mfi
      nop.m 999
//
//    N odd:  Result  =  S_hi + S_lo      (User supplied rounding mode for C1)
//
       fmpy.s0 fp_tmp = fp_tmp, fp_tmp  // Dummy mult to set inexact
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N even: rsq = r * r
//    N odd:  S_hi = frcpa(r)
//
(p12) fmerge.ns S_hi = S_hi, S_hi
      nop.i 999
}
{ .mfi
      nop.m 999
//
//    N even: rsq = rsq * P1_2 + P1_1
//    N odd:  poly1 =  1.0 +  S_hi * r    16 bits partial  account for necessary
//
(p11) fmpy.s1 Poly = rsq, Poly
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
(p12) fma.s1 poly1 = S_hi, r,f1
(p11) tbit.z.unc p14, p15 = cot_flag, 0 // p14=1 for tanl; p15=1 for cotl
}
{ .mfi
      nop.m 999
//
//    N even: Poly =  Poly * rsq
//    N odd:  S_hi  = S_hi + S_hi*poly1  16 bits account for necessary
//
(p11) fma.s1 Poly = r, Poly, c
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
      nop.i 999
}
{ .mfi
      nop.m 999
//
//    N odd:   S_hi  = S_hi * poly1 + S_hi   32 bits
//
(p14) fadd.s0 Result = r, Poly          // for tanl
      nop.i 999 ;;
}

.pred.rel "mutex",p15,p12
{ .mfi
      nop.m 999
(p15) fms.s0 Result = r, mOne, Poly     // for cotl
      nop.i 999
}
{ .mfi
      nop.m 999
(p12) fma.s1 poly1 =  S_hi, r, f1
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N even: Poly = Poly * r + c
//    N odd:  poly1  = 1.0 + S_hi * r        32 bits partial
//
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
(p12) fma.s1 poly1 = S_hi, r, f1
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N even: Result = Poly + r  (Rounding mode S0)
//    N odd:  poly1  =  S_hi * r + 1.0       64 bits partial
//
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N odd:  poly1  =  S_hi * poly + S_hi    64 bits
//
(p12) fma.s1 poly1 = S_hi, r, f1
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N odd:  poly1  =  S_hi * r + 1.0
//
(p12) fma.s1 poly1 = S_hi, c, poly1
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N odd:  poly1  =  S_hi * c + poly1
//
(p12) fmpy.s1 S_lo = S_hi, poly1
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N odd:  S_lo  =  S_hi *  poly1
//
(p12) fma.s1 S_lo = P, r, S_lo
(p12) tbit.z.unc p14, p15 = cot_flag, 0 ;; // p14=1 for tanl; p15=1 for cotl
}

{ .mfi
      nop.m 999
(p14) fadd.s0 Result = S_hi, S_lo           // for tanl
      nop.i 999
}
{ .mfb
      nop.m 999
//
//    N odd:  S_lo  =  S_lo + r * P
//
(p15) fms.s0 Result = S_hi, mOne, S_lo      // for cotl
      br.ret.sptk b0 ;;      // Exit for 2^24 <= |x| < 2^63 and |s| < 2^-14
}


TANL_SMALL_R:
// Here if |r| < 1/4
// r and c have been computed.
// *****************************************************************
// *****************************************************************
// *****************************************************************
//    N odd:  S_hi = frcpa(r)
//    Get [i_1] - lsb of N_fix_gr.  Set p11 if N even, p12 if N odd.
//    N even: rsq = r * r
{ .mfi
      add table_ptr1 = 160, table_base    // Point to tanl_table_p1
      frcpa.s1 S_hi, p0 = f1, r           // S_hi for N odd
      add N_fix_gr = N_fix_gr, cot_flag   // N = N + 1 (for cotl)
}
{ .mfi
      add table_ptr2 = 400, table_base    // Point to Q1_7
      fmpy.s1 rsq = r, r
      nop.i 999
}
;;

{ .mmi
      ldfe P1_1 = [table_ptr1], 16
;;
      ldfe P1_2 = [table_ptr1], 16
      tbit.z p11, p12 = N_fix_gr, 0
}
;;


{ .mfi
      ldfe P1_3 = [table_ptr1], 96
      nop.f 999
      nop.i 999
}
;;

{ .mfi
(p11) ldfe P1_9 = [table_ptr1], -16
(p12) fmerge.ns S_hi = S_hi, S_hi
      nop.i 999
}
{ .mfi
      nop.m 999
(p11) fmpy.s1 r_to_the_8 = rsq, rsq
      nop.i 999
}
;;

//
//    N even: Poly2 = P1_7 + Poly2 * rsq
//    N odd:  poly2 = Q1_5 + poly2 * rsq
//
{ .mfi
(p11) ldfe P1_8 = [table_ptr1], -16
(p11) fadd.s1 CORR = rsq, f1
      nop.i 999
}
;;

//
//    N even: Poly1 = P1_2 + P1_3 * rsq
//    N odd:  poly1 =  1.0 +  S_hi * r
//    16 bits partial  account for necessary (-1)
//
{ .mmi
(p11) ldfe P1_7 = [table_ptr1], -16
;;
(p11) ldfe P1_6 = [table_ptr1], -16
      nop.i 999
}
;;

//
//    N even: Poly1 = P1_1 + Poly1 * rsq
//    N odd:  S_hi  =  S_hi + S_hi * poly1)     16 bits account for necessary
//
//
//    N even: Poly2 = P1_5 + Poly2 * rsq
//    N odd:  poly2 = Q1_3 + poly2 * rsq
//
{ .mfi
(p11) ldfe P1_5 = [table_ptr1], -16
(p11) fmpy.s1 r_to_the_8 = r_to_the_8, r_to_the_8
      nop.i 999
}
{ .mfi
      nop.m 999
(p12) fma.s1 poly1 =  S_hi, r, f1
      nop.i 999
}
;;

//
//    N even: Poly1 =  Poly1 * rsq
//    N odd:  poly1  = 1.0 + S_hi * r         32 bits partial
//

//
//    N even: CORR =  CORR * c
//    N odd:  S_hi  =  S_hi * poly1 + S_hi    32 bits
//

//
//    N even: Poly2 = P1_6 + Poly2 * rsq
//    N odd:  poly2 = Q1_4 + poly2 * rsq
//

{ .mmf
(p11) ldfe P1_4 = [table_ptr1], -16
      nop.m 999
(p11) fmpy.s1 CORR =  CORR, c
}
;;

{ .mfi
      nop.m 999
(p11) fma.s1 Poly1 = P1_3, rsq, P1_2
      nop.i 999 ;;
}
{ .mfi
(p12) ldfe Q1_7 = [table_ptr2], -16
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
      nop.i 999 ;;
}
{ .mfi
(p12) ldfe Q1_6 = [table_ptr2], -16
(p11) fma.s1 Poly2 = P1_9, rsq, P1_8
      nop.i 999 ;;
}
{ .mmi
(p12) ldfe Q1_5 = [table_ptr2], -16 ;;
(p12) ldfe Q1_4 = [table_ptr2], -16
      nop.i 999 ;;
}
{ .mfi
(p12) ldfe Q1_3 = [table_ptr2], -16
//
//    N even: Poly2 = P1_8 + P1_9 * rsq
//    N odd:  poly2 = Q1_6 + Q1_7 * rsq
//
(p11) fma.s1 Poly1 = Poly1, rsq, P1_1
      nop.i 999 ;;
}
{ .mfi
(p12) ldfe Q1_2 = [table_ptr2], -16
(p12) fma.s1 poly1 = S_hi, r, f1
      nop.i 999 ;;
}
{ .mfi
(p12) ldfe Q1_1 = [table_ptr2], -16
(p11) fma.s1 Poly2 = Poly2, rsq, P1_7
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N even: CORR =  rsq + 1
//    N even: r_to_the_8 =  rsq * rsq
//
(p11) fmpy.s1 Poly1 = Poly1, rsq
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
(p12) fma.s1 S_hi = S_hi, poly1, S_hi
      nop.i 999
}
{ .mfi
      nop.m 999
(p12) fma.s1 poly2 = Q1_7, rsq, Q1_6
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
(p11) fma.s1 Poly2 = Poly2, rsq, P1_6
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
(p12) fma.s1 poly1 = S_hi, r, f1
      nop.i 999
}
{ .mfi
      nop.m 999
(p12) fma.s1 poly2 = poly2, rsq, Q1_5
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
(p11) fma.s1 Poly2= Poly2, rsq, P1_5
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
(p12) fma.s1 S_hi =  S_hi, poly1, S_hi
      nop.i 999
}
{ .mfi
      nop.m 999
(p12) fma.s1 poly2 = poly2, rsq, Q1_4
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N even: r_to_the_8 = r_to_the_8 * r_to_the_8
//    N odd:  poly1  =  S_hi * r + 1.0       64 bits partial
//
(p11) fma.s1 Poly2 = Poly2, rsq, P1_4
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N even: Poly = CORR + Poly * r
//    N odd:  P = Q1_1 + poly2 * rsq
//
(p12) fma.s1 poly1 = S_hi, r, f1
      nop.i 999
}
{ .mfi
      nop.m 999
(p12) fma.s1 poly2 = poly2, rsq, Q1_3
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N even: Poly2 = P1_4 + Poly2 * rsq
//    N odd:  poly2 = Q1_2 + poly2 * rsq
//
(p11) fma.s1 Poly = Poly2, r_to_the_8, Poly1
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
(p12) fma.s1 poly1 = S_hi, c, poly1
      nop.i 999
}
{ .mfi
      nop.m 999
(p12) fma.s1 poly2 = poly2, rsq, Q1_2
      nop.i 999 ;;
}

{ .mfi
      nop.m 999
//
//    N even: Poly = Poly1 + Poly2 * r_to_the_8
//    N odd:  S_hi =  S_hi * poly1 + S_hi    64 bits
//
(p11) fma.s1 Poly = Poly, r, CORR
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N even: Result =  r + Poly  (User supplied rounding mode)
//    N odd:  poly1  =  S_hi * c + poly1
//
(p12) fmpy.s1 S_lo = S_hi, poly1
(p11) tbit.z.unc p14, p15 = cot_flag, 0 // p14=1 for tanl; p15=1 for cotl
}
{ .mfi
      nop.m 999
(p12) fma.s1 P = poly2, rsq, Q1_1
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N odd:  poly1  =  S_hi * r + 1.0
//
//
//    N odd:  S_lo  =  S_hi *  poly1
//
(p14) fadd.s0 Result = Poly, r          // for tanl
      nop.i 999
}
{ .mfi
      nop.m 999
(p15) fms.s0 Result = Poly, mOne, r     // for cotl
      nop.i 999 ;;
}

{ .mfi
      nop.m 999
//
//    N odd:  S_lo  =  Q1_1 * c + S_lo
//
(p12) fma.s1 S_lo = Q1_1, c, S_lo
      nop.i 999
}
{ .mfi
      nop.m 999
      fmpy.s0 fp_tmp = fp_tmp, fp_tmp  // Dummy mult to set inexact
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N odd:  Result =  S_lo + r * P
//
(p12) fma.s1 Result = P, r, S_lo
(p12) tbit.z.unc p14, p15 = cot_flag, 0 ;; // p14=1 for tanl; p15=1 for cotl
}

//
//    N odd:  Result = Result + S_hi  (user supplied rounding mode)
//
{ .mfi
      nop.m 999
(p14) fadd.s0 Result = Result, S_hi         // for tanl
      nop.i 999
}
{ .mfb
      nop.m 999
(p15) fms.s0 Result = Result, mOne, S_hi    // for cotl
      br.ret.sptk b0 ;;              // Exit |r| < 1/4 path
}


TANL_NORMAL_R:
// Here if 1/4 <= |x| < pi/4  or  if |x| >= 2^63 and |r| >= 1/4
// *******************************************************************
// *******************************************************************
// *******************************************************************
//
//    r and c have been computed.
//
{ .mfi
      nop.m 999
      fand B = B_mask1, r
      nop.i 999
}
;;

TANL_NORMAL_R_A:
// Enter here if pi/4 <= |x| < 2^63 and |r| >= 1/4
//    Get the 5 bits or r for the lookup.   1.xxxxx ....
{ .mmi
      add table_ptr1 = 416, table_base     // Point to tanl_table_p2
      mov GR_exp_2tom65 = 0xffff - 65      // Scaling constant for B
      extr.u lookup = sig_r, 58, 5
}
;;

{ .mmi
      ldfe P2_1 = [table_ptr1], 16
      setf.exp TWO_TO_NEG65 = GR_exp_2tom65  // 2^-65 for scaling B if exp_r=-2
      add N_fix_gr = N_fix_gr, cot_flag      // N = N + 1 (for cotl)
}
;;

.pred.rel "mutex",p11,p12
//    B =  2^63 * 1.xxxxx 100...0
{ .mfi
      ldfe P2_2 = [table_ptr1], 16
      for B = B_mask2, B
      mov table_offset = 512               // Assume table offset is 512
}
;;

{ .mfi
      ldfe P2_3 = [table_ptr1], 16
      fmerge.s  Pos_r = f1, r
      tbit.nz p8,p9 = exp_r, 0
}
;;

//    Is  B = 2** -2 or  B= 2** -1? If 2**-1, then
//    we want an offset of 512 for table addressing.
{ .mii
      add table_ptr2 = 1296, table_base     // Point to tanl_table_cm2
(p9)  shladd table_offset = lookup, 4, table_offset
(p8)  shladd table_offset = lookup, 4, r0
}
;;

{ .mmi
      add table_ptr1 = table_ptr1, table_offset  // Point to T_hi
      add table_ptr2 = table_ptr2, table_offset  // Point to C_hi
      add table_ptr3 = 2128, table_base     // Point to tanl_table_scim2
}
;;

{ .mmi
      ldfd T_hi = [table_ptr1], 8                // Load T_hi
;;
      ldfd C_hi = [table_ptr2], 8                // Load C_hi
      add table_ptr3 = table_ptr3, table_offset  // Point to SC_inv
}
;;

//
//    x = |r| - B
//
//   Convert B so it has the same exponent as Pos_r before subtracting
{ .mfi
      ldfs T_lo = [table_ptr1]                   // Load T_lo
(p9)  fnma.s1 x = B, FR_2tom64, Pos_r
      nop.i 999
}
{ .mfi
      nop.m 999
(p8)  fnma.s1 x = B, TWO_TO_NEG65, Pos_r
      nop.i 999
}
;;

{ .mfi
      ldfs C_lo = [table_ptr2]                   // Load C_lo
      nop.f 999
      nop.i 999
}
;;

{ .mfi
      ldfe SC_inv = [table_ptr3]                 // Load SC_inv
      fmerge.s  sgn_r = r, f1
      tbit.z p11, p12 = N_fix_gr, 0              // p11 if N even, p12 if odd

}
;;

//
//    xsq = x * x
//    N even: Tx = T_hi * x
//
//    N even: Tx1 = Tx + 1
//    N odd:  Cx1 = 1 - Cx
//

{ .mfi
      nop.m 999
      fmpy.s1 xsq = x, x
      nop.i 999
}
{ .mfi
      nop.m 999
(p11) fmpy.s1 Tx = T_hi, x
      nop.i 999
}
;;

//
//    N odd: Cx = C_hi * x
//
{ .mfi
      nop.m 999
(p12) fmpy.s1 Cx = C_hi, x
      nop.i 999
}
;;
//
//    N even and odd: P = P2_3 + P2_2 * xsq
//
{ .mfi
      nop.m 999
      fma.s1 P = P2_3, xsq, P2_2
      nop.i 999
}
{ .mfi
      nop.m 999
(p11) fadd.s1 Tx1 = Tx, f1
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N even: D = C_hi - tanx
//    N odd: D = T_hi + tanx
//
(p11) fmpy.s1 CORR = SC_inv, T_hi
      nop.i 999
}
{ .mfi
      nop.m 999
      fmpy.s1 Sx = SC_inv, x
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
(p12) fmpy.s1 CORR = SC_inv, C_hi
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
(p12) fsub.s1 V_hi = f1, Cx
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
      fma.s1 P = P, xsq, P2_1
      nop.i 999
}
{ .mfi
      nop.m 999
//
//    N even and odd: P = P2_1 + P * xsq
//
(p11) fma.s1 V_hi = Tx, Tx1, f1
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N even: Result  = sgn_r * tail + T_hi (user rounding mode for C1)
//    N odd:  Result  = sgn_r * tail + C_hi (user rounding mode for C1)
//
      fmpy.s0 fp_tmp = fp_tmp, fp_tmp  // Dummy mult to set inexact
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
      fmpy.s1 CORR = CORR, c
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
(p12) fnma.s1 V_hi = Cx,V_hi,f1
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N even: V_hi = Tx * Tx1 + 1
//    N odd: Cx1 = 1 - Cx * Cx1
//
      fmpy.s1 P = P, xsq
      nop.i 999
}
{ .mfi
      nop.m 999
//
//    N even and odd: P = P * xsq
//
(p11) fmpy.s1 V_hi = V_hi, T_hi
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N even and odd: tail = P * tail + V_lo
//
(p11) fmpy.s1 T_hi = sgn_r, T_hi
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
      fmpy.s1 CORR = CORR, sgn_r
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
(p12) fmpy.s1 V_hi = V_hi,C_hi
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N even: V_hi = T_hi * V_hi
//    N odd: V_hi  = C_hi * V_hi
//
      fma.s1 tanx = P, x, x
      nop.i 999
}
{ .mfi
      nop.m 999
(p12) fnmpy.s1 C_hi = sgn_r, C_hi
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N even: V_lo = 1 - V_hi + C_hi
//    N odd: V_lo = 1 - V_hi + T_hi
//
(p11) fadd.s1 CORR = CORR, T_lo
      nop.i 999
}
{ .mfi
      nop.m 999
(p12) fsub.s1 CORR = CORR, C_lo
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N even and odd: tanx = x + x * P
//    N even and odd: Sx = SC_inv * x
//
(p11) fsub.s1 D = C_hi, tanx
      nop.i 999
}
{ .mfi
      nop.m 999
(p12) fadd.s1 D = T_hi, tanx
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N odd: CORR = SC_inv * C_hi
//    N even: CORR = SC_inv * T_hi
//
      fnma.s1 D = V_hi, D, f1
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N even and odd: D = 1 - V_hi * D
//    N even and odd: CORR = CORR * c
//
      fma.s1 V_hi = V_hi, D, V_hi
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N even and odd: V_hi = V_hi + V_hi * D
//    N even and odd: CORR = sgn_r * CORR
//
(p11) fnma.s1 V_lo = V_hi, C_hi, f1
      nop.i 999
}
{ .mfi
      nop.m 999
(p12) fnma.s1 V_lo = V_hi, T_hi, f1
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N even: CORR = COOR + T_lo
//    N odd: CORR = CORR - C_lo
//
(p11) fma.s1 V_lo = tanx, V_hi, V_lo
      tbit.nz p15, p0 = cot_flag, 0       // p15=1 if we compute cotl
}
{ .mfi
      nop.m 999
(p12) fnma.s1 V_lo = tanx, V_hi, V_lo
      nop.i 999 ;;
}

{ .mfi
      nop.m 999
(p15) fms.s1 T_hi = f0, f0, T_hi        // to correct result's sign for cotl
      nop.i 999
}
{ .mfi
      nop.m 999
(p15) fms.s1 C_hi = f0, f0, C_hi        // to correct result's sign for cotl
      nop.i 999
};;

{ .mfi
      nop.m 999
(p15) fms.s1 sgn_r = f0, f0, sgn_r      // to correct result's sign for cotl
      nop.i 999
};;

{ .mfi
      nop.m 999
//
//    N even: V_lo = V_lo + V_hi * tanx
//    N odd: V_lo = V_lo - V_hi * tanx
//
(p11) fnma.s1 V_lo = C_lo, V_hi, V_lo
      nop.i 999
}
{ .mfi
      nop.m 999
(p12) fnma.s1 V_lo = T_lo, V_hi, V_lo
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N  even: V_lo = V_lo - V_hi * C_lo
//    N  odd: V_lo = V_lo - V_hi * T_lo
//
      fmpy.s1 V_lo = V_hi, V_lo
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N even and odd: V_lo = V_lo * V_hi
//
      fadd.s1 tail = V_hi, V_lo
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N even and odd: tail = V_hi + V_lo
//
      fma.s1 tail = tail, P, V_lo
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N even: T_hi = sgn_r * T_hi
//    N odd : C_hi = -sgn_r * C_hi
//
      fma.s1 tail = tail, Sx, CORR
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N even and odd: tail = Sx * tail + CORR
//
      fma.s1 tail = V_hi, Sx, tail
      nop.i 999 ;;
}
{ .mfi
      nop.m 999
//
//    N even an odd: tail = Sx * V_hi + tail
//
(p11) fma.s0 Result = sgn_r, tail, T_hi
      nop.i 999
}
{ .mfb
      nop.m 999
(p12) fma.s0 Result = sgn_r, tail, C_hi
      br.ret.sptk b0 ;;                 // Exit for 1/4 <= |r| < pi/4
}

TANL_DENORMAL:
// Here if x denormal
{ .mfb
      getf.exp GR_signexp_x = Norm_Arg          // Get sign and exponent of x
      nop.f 999
      br.cond.sptk TANL_COMMON                  // Return to common code
}
;;


TANL_SPECIAL:
TANL_UNSUPPORTED:
//
//     Code for NaNs, Unsupporteds, Infs, or +/- zero ?
//     Invalid raised for Infs and SNaNs.
//

{ .mfi
      nop.m 999
      fmerge.s  f10 = f8, f8            // Save input for error call
      tbit.nz p6, p7 = cot_flag, 0      // p6=1 if we compute cotl
}
;;

{ .mfi
      nop.m 999
(p6)  fclass.m p6, p7 = f8, 0x7         // Test for zero (cotl only)
      nop.i 999
}
;;

.pred.rel "mutex", p6, p7
{ .mfi
(p6)  mov GR_Parameter_Tag = 225        // (cotl)
(p6)  frcpa.s0  f8, p0 = f1, f8         // cotl(+-0) = +-Inf
      nop.i 999
}
{ .mfb
      nop.m 999
(p7)  fmpy.s0 f8 = f8, f0
(p7)  br.ret.sptk b0
}
;;

GLOBAL_IEEE754_END(tanl)


LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue

// (1)
{ .mfi
      add           GR_Parameter_Y=-32,sp        // Parameter 2 value
      nop.f         0
.save   ar.pfs,GR_SAVE_PFS
      mov           GR_SAVE_PFS=ar.pfs           // Save ar.pfs
}
{ .mfi
.fframe 64
      add sp=-64,sp                              // Create new stack
      nop.f 0
      mov GR_SAVE_GP=gp                          // Save gp
};;

// (2)
{ .mmi
      stfe [GR_Parameter_Y] = f1,16              // STORE Parameter 2 on stack
      add GR_Parameter_X = 16,sp                 // Parameter 1 address
.save   b0, GR_SAVE_B0
      mov GR_SAVE_B0=b0                          // Save b0
};;

.body
// (3)
{ .mib
      stfe [GR_Parameter_X] = f10                // STORE Parameter 1 on stack
      add   GR_Parameter_RESULT = 0,GR_Parameter_Y  // Parameter 3 address
      nop.b 0
}
{ .mib
      stfe [GR_Parameter_Y] = f8                 // STORE Parameter 3 on stack
      add   GR_Parameter_Y = -16,GR_Parameter_Y
      br.call.sptk b0=__libm_error_support#      // Call error handling function
};;
{ .mmi
      nop.m 0
      nop.m 0
      add   GR_Parameter_RESULT = 48,sp
};;

// (4)
{ .mmi
      ldfe  f8 = [GR_Parameter_RESULT]           // Get return result off stack
.restore sp
      add   sp = 64,sp                           // Restore stack pointer
      mov   b0 = GR_SAVE_B0                      // Restore return address
};;
{ .mib
      mov   gp = GR_SAVE_GP                      // Restore gp
      mov   ar.pfs = GR_SAVE_PFS                 // Restore ar.pfs
      br.ret.sptk     b0                         // Return
};;

LOCAL_LIBM_END(__libm_error_region)

.type   __libm_error_support#,@function
.global __libm_error_support#


// *******************************************************************
// *******************************************************************
// *******************************************************************
//
//     Special Code to handle very large argument case.
//     Call int __libm_pi_by_2_reduce(x,r,c) for |arguments| >= 2**63
//     The interface is custom:
//       On input:
//         (Arg or x) is in f8
//       On output:
//         r is in f8
//         c is in f9
//         N is in r8
//     We know also that __libm_pi_by_2_reduce preserves f10-15, f71-127.  We
//     use this to eliminate save/restore of key fp registers in this calling
//     function.
//
// *******************************************************************
// *******************************************************************
// *******************************************************************

LOCAL_LIBM_ENTRY(__libm_callout)
TANL_ARG_TOO_LARGE:
.prologue
{ .mfi
      add table_ptr2 = 144, table_base        // Point to 2^-2
      nop.f 999
.save   ar.pfs,GR_SAVE_PFS
      mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
}
;;

//     Load 2^-2, -2^-2
{ .mmi
      ldfps  TWO_TO_NEG2, NEGTWO_TO_NEG2 = [table_ptr2]
      setf.sig B_mask1 = bmask1               // Form mask to get 5 msb of r
.save   b0, GR_SAVE_B0
      mov GR_SAVE_B0=b0                       // Save b0
};;

.body
//
//     Call argument reduction with x in f8
//     Returns with N in r8, r in f8, c in f9
//     Assumes f71-127 are preserved across the call
//
{ .mib
      setf.sig B_mask2 = bmask2               // Form mask to form B from r
      mov GR_SAVE_GP=gp                       // Save gp
      br.call.sptk b0=__libm_pi_by_2_reduce#
}
;;

//
//     Is |r| < 2**(-2)
//
{ .mfi
      getf.sig sig_r = r                     // Extract significand of r
      fcmp.lt.s1  p6, p0 = r, TWO_TO_NEG2
      mov   gp = GR_SAVE_GP                  // Restore gp
}
;;

{ .mfi
      getf.exp exp_r = r                     // Extract signexp of r
      nop.f 999
      mov    b0 = GR_SAVE_B0                 // Restore return address
}
;;

//
//     Get N_fix_gr
//
{ .mfi
      mov   N_fix_gr = r8
(p6)  fcmp.gt.unc.s1  p6, p0 = r, NEGTWO_TO_NEG2
      mov   ar.pfs = GR_SAVE_PFS             // Restore pfs
}
;;

{ .mbb
      nop.m 999
(p6)  br.cond.spnt TANL_SMALL_R              // Branch if |r| < 1/4
      br.cond.sptk TANL_NORMAL_R             // Branch if 1/4 <= |r| < pi/4
}
;;

LOCAL_LIBM_END(__libm_callout)

.type __libm_pi_by_2_reduce#,@function
.global __libm_pi_by_2_reduce#