1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
|
.file "log1pl.s"
// Copyright (c) 2000 - 2003, Intel Corporation
// All rights reserved.
//
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
//*********************************************************************
//
// History:
// 02/02/00 Initial version
// 04/04/00 Unwind support added
// 08/15/00 Bundle added after call to __libm_error_support to properly
// set [the previously overwritten] GR_Parameter_RESULT.
// 05/21/01 Removed logl and log10l, putting them in a separate file
// 06/29/01 Improved speed of all paths
// 05/20/02 Cleaned up namespace and sf0 syntax
// 02/10/03 Reordered header: .section, .global, .proc, .align;
// used data8 for long double table values
//
//*********************************************************************
//
//*********************************************************************
//
// Function: log1pl(x) = ln(x+1), for double-extended precision x values
//
//*********************************************************************
//
// Resources Used:
//
// Floating-Point Registers: f8 (Input and Return Value)
// f34-f82
//
// General Purpose Registers:
// r32-r56
// r53-r56 (Used to pass arguments to error handling routine)
//
// Predicate Registers: p6-p13
//
//*********************************************************************
//
// IEEE Special Conditions:
//
// Denormal fault raised on denormal inputs
// Overflow exceptions cannot occur
// Underflow exceptions raised when appropriate for log1p
// Inexact raised when appropriate by algorithm
//
// log1pl(inf) = inf
// log1pl(-inf) = QNaN
// log1pl(+/-0) = +/-0
// log1pl(-1) = -inf
// log1pl(SNaN) = QNaN
// log1pl(QNaN) = QNaN
// log1pl(EM_special Values) = QNaN
//
//*********************************************************************
//
// Overview
//
// The method consists of three cases.
//
// If |X| < 2^(-80) use case log1p_small;
// else |X| < 2^(-7) use case log_near1;
// else use case log_regular;
//
// Case log1p_small:
//
// log1pl( X ) = logl( X+1 ) can be approximated by X
//
// Case log_near1:
//
// log1pl( X ) = log( X+1 ) can be approximated by a simple polynomial
// in W = X. This polynomial resembles the truncated Taylor
// series W - W^/2 + W^3/3 - ...
//
// Case log_regular:
//
// Here we use a table lookup method. The basic idea is that in
// order to compute logl(Arg) = log1pl (Arg-1) for an argument Arg in [1,2),
// we construct a value G such that G*Arg is close to 1 and that
// logl(1/G) is obtainable easily from a table of values calculated
// beforehand. Thus
//
// logl(Arg) = logl(1/G) + logl(G*Arg)
// = logl(1/G) + logl(1 + (G*Arg - 1))
//
// Because |G*Arg - 1| is small, the second term on the right hand
// side can be approximated by a short polynomial. We elaborate
// this method in four steps.
//
// Step 0: Initialization
//
// We need to calculate logl( X+1 ). Obtain N, S_hi such that
//
// X+1 = 2^N * ( S_hi + S_lo ) exactly
//
// where S_hi in [1,2) and S_lo is a correction to S_hi in the sense
// that |S_lo| <= ulp(S_hi).
//
// Step 1: Argument Reduction
//
// Based on S_hi, obtain G_1, G_2, G_3 from a table and calculate
//
// G := G_1 * G_2 * G_3
// r := (G * S_hi - 1) + G * S_lo
//
// These G_j's have the property that the product is exactly
// representable and that |r| < 2^(-12) as a result.
//
// Step 2: Approximation
//
//
// logl(1 + r) is approximated by a short polynomial poly(r).
//
// Step 3: Reconstruction
//
//
// Finally, log1pl( X ) = logl( X+1 ) is given by
//
// logl( X+1 ) = logl( 2^N * (S_hi + S_lo) )
// ~=~ N*logl(2) + logl(1/G) + logl(1 + r)
// ~=~ N*logl(2) + logl(1/G) + poly(r).
//
// **** Algorithm ****
//
// Case log1p_small:
//
// Although log1pl(X) is basically X, we would like to preserve the inexactness
// nature as well as consistent behavior under different rounding modes.
// We can do this by computing the result as
//
// log1pl(X) = X - X*X
//
//
// Case log_near1:
//
// Here we compute a simple polynomial. To exploit parallelism, we split
// the polynomial into two portions.
//
// W := X
// Wsq := W * W
// W4 := Wsq*Wsq
// W6 := W4*Wsq
// Y_hi := W + Wsq*(P_1 + W*(P_2 + W*(P_3 + W*P_4))
// Y_lo := W6*(P_5 + W*(P_6 + W*(P_7 + W*P_8)))
//
// Case log_regular:
//
// We present the algorithm in four steps.
//
// Step 0. Initialization
// ----------------------
//
// Z := X + 1
// N := unbaised exponent of Z
// S_hi := 2^(-N) * Z
// S_lo := 2^(-N) * { (max(X,1)-Z) + min(X,1) }
//
// Step 1. Argument Reduction
// --------------------------
//
// Let
//
// Z = 2^N * S_hi = 2^N * 1.d_1 d_2 d_3 ... d_63
//
// We obtain G_1, G_2, G_3 by the following steps.
//
//
// Define X_0 := 1.d_1 d_2 ... d_14. This is extracted
// from S_hi.
//
// Define A_1 := 1.d_1 d_2 d_3 d_4. This is X_0 truncated
// to lsb = 2^(-4).
//
// Define index_1 := [ d_1 d_2 d_3 d_4 ].
//
// Fetch Z_1 := (1/A_1) rounded UP in fixed point with
// fixed point lsb = 2^(-15).
// Z_1 looks like z_0.z_1 z_2 ... z_15
// Note that the fetching is done using index_1.
// A_1 is actually not needed in the implementation
// and is used here only to explain how is the value
// Z_1 defined.
//
// Fetch G_1 := (1/A_1) truncated to 21 sig. bits.
// floating pt. Again, fetching is done using index_1. A_1
// explains how G_1 is defined.
//
// Calculate X_1 := X_0 * Z_1 truncated to lsb = 2^(-14)
// = 1.0 0 0 0 d_5 ... d_14
// This is accomplished by integer multiplication.
// It is proved that X_1 indeed always begin
// with 1.0000 in fixed point.
//
//
// Define A_2 := 1.0 0 0 0 d_5 d_6 d_7 d_8. This is X_1
// truncated to lsb = 2^(-8). Similar to A_1,
// A_2 is not needed in actual implementation. It
// helps explain how some of the values are defined.
//
// Define index_2 := [ d_5 d_6 d_7 d_8 ].
//
// Fetch Z_2 := (1/A_2) rounded UP in fixed point with
// fixed point lsb = 2^(-15). Fetch done using index_2.
// Z_2 looks like z_0.z_1 z_2 ... z_15
//
// Fetch G_2 := (1/A_2) truncated to 21 sig. bits.
// floating pt.
//
// Calculate X_2 := X_1 * Z_2 truncated to lsb = 2^(-14)
// = 1.0 0 0 0 0 0 0 0 d_9 d_10 ... d_14
// This is accomplished by integer multiplication.
// It is proved that X_2 indeed always begin
// with 1.00000000 in fixed point.
//
//
// Define A_3 := 1.0 0 0 0 0 0 0 0 d_9 d_10 d_11 d_12 d_13 1.
// This is 2^(-14) + X_2 truncated to lsb = 2^(-13).
//
// Define index_3 := [ d_9 d_10 d_11 d_12 d_13 ].
//
// Fetch G_3 := (1/A_3) truncated to 21 sig. bits.
// floating pt. Fetch is done using index_3.
//
// Compute G := G_1 * G_2 * G_3.
//
// This is done exactly since each of G_j only has 21 sig. bits.
//
// Compute
//
// r := (G*S_hi - 1) + G*S_lo using 2 FMA operations.
//
// Thus r approximates G*(S_hi + S_lo) - 1 to within a couple of
// rounding errors.
//
//
// Step 2. Approximation
// ---------------------
//
// This step computes an approximation to logl( 1 + r ) where r is the
// reduced argument just obtained. It is proved that |r| <= 1.9*2^(-13);
// thus logl(1+r) can be approximated by a short polynomial:
//
// logl(1+r) ~=~ poly = r + Q1 r^2 + ... + Q4 r^5
//
//
// Step 3. Reconstruction
// ----------------------
//
// This step computes the desired result of logl(X+1):
//
// logl(X+1) = logl( 2^N * (S_hi + S_lo) )
// = N*logl(2) + logl( S_hi + S_lo) )
// = N*logl(2) + logl(1/G) +
// logl(1 + G * ( S_hi + S_lo ) - 1 )
//
// logl(2), logl(1/G_j) are stored as pairs of (single,double) numbers:
// log2_hi, log2_lo, log1byGj_hi, log1byGj_lo. The high parts are
// single-precision numbers and the low parts are double precision
// numbers. These have the property that
//
// N*log2_hi + SUM ( log1byGj_hi )
//
// is computable exactly in double-extended precision (64 sig. bits).
// Finally
//
// Y_hi := N*log2_hi + SUM ( log1byGj_hi )
// Y_lo := poly_hi + [ poly_lo +
// ( SUM ( log1byGj_lo ) + N*log2_lo ) ]
//
RODATA
.align 64
// ************* DO NOT CHANGE THE ORDER OF THESE TABLES *************
// P_8, P_7, P_6, P_5, P_4, P_3, P_2, and P_1
LOCAL_OBJECT_START(Constants_P)
//data4 0xEFD62B15,0xE3936754,0x00003FFB,0x00000000
//data4 0xA5E56381,0x8003B271,0x0000BFFC,0x00000000
//data4 0x73282DB0,0x9249248C,0x00003FFC,0x00000000
//data4 0x47305052,0xAAAAAA9F,0x0000BFFC,0x00000000
//data4 0xCCD17FC9,0xCCCCCCCC,0x00003FFC,0x00000000
//data4 0x00067ED5,0x80000000,0x0000BFFD,0x00000000
//data4 0xAAAAAAAA,0xAAAAAAAA,0x00003FFD,0x00000000
//data4 0xFFFFFFFE,0xFFFFFFFF,0x0000BFFD,0x00000000
data8 0xE3936754EFD62B15,0x00003FFB
data8 0x8003B271A5E56381,0x0000BFFC
data8 0x9249248C73282DB0,0x00003FFC
data8 0xAAAAAA9F47305052,0x0000BFFC
data8 0xCCCCCCCCCCD17FC9,0x00003FFC
data8 0x8000000000067ED5,0x0000BFFD
data8 0xAAAAAAAAAAAAAAAA,0x00003FFD
data8 0xFFFFFFFFFFFFFFFE,0x0000BFFD
LOCAL_OBJECT_END(Constants_P)
// log2_hi, log2_lo, Q_4, Q_3, Q_2, and Q_1
LOCAL_OBJECT_START(Constants_Q)
//data4 0x00000000,0xB1721800,0x00003FFE,0x00000000
//data4 0x4361C4C6,0x82E30865,0x0000BFE2,0x00000000
//data4 0x328833CB,0xCCCCCAF2,0x00003FFC,0x00000000
//data4 0xA9D4BAFB,0x80000077,0x0000BFFD,0x00000000
//data4 0xAAABE3D2,0xAAAAAAAA,0x00003FFD,0x00000000
//data4 0xFFFFDAB7,0xFFFFFFFF,0x0000BFFD,0x00000000
data8 0xB172180000000000,0x00003FFE
data8 0x82E308654361C4C6,0x0000BFE2
data8 0xCCCCCAF2328833CB,0x00003FFC
data8 0x80000077A9D4BAFB,0x0000BFFD
data8 0xAAAAAAAAAAABE3D2,0x00003FFD
data8 0xFFFFFFFFFFFFDAB7,0x0000BFFD
LOCAL_OBJECT_END(Constants_Q)
// 1/ln10_hi, 1/ln10_lo
LOCAL_OBJECT_START(Constants_1_by_LN10)
//data4 0x37287195,0xDE5BD8A9,0x00003FFD,0x00000000
//data4 0xACCF70C8,0xD56EAABE,0x00003FBB,0x00000000
data8 0xDE5BD8A937287195,0x00003FFD
data8 0xD56EAABEACCF70C8,0x00003FBB
LOCAL_OBJECT_END(Constants_1_by_LN10)
// Z1 - 16 bit fixed
LOCAL_OBJECT_START(Constants_Z_1)
data4 0x00008000
data4 0x00007879
data4 0x000071C8
data4 0x00006BCB
data4 0x00006667
data4 0x00006187
data4 0x00005D18
data4 0x0000590C
data4 0x00005556
data4 0x000051EC
data4 0x00004EC5
data4 0x00004BDB
data4 0x00004925
data4 0x0000469F
data4 0x00004445
data4 0x00004211
LOCAL_OBJECT_END(Constants_Z_1)
// G1 and H1 - IEEE single and h1 - IEEE double
LOCAL_OBJECT_START(Constants_G_H_h1)
data4 0x3F800000,0x00000000
data8 0x0000000000000000
data4 0x3F70F0F0,0x3D785196
data8 0x3DA163A6617D741C
data4 0x3F638E38,0x3DF13843
data8 0x3E2C55E6CBD3D5BB
data4 0x3F579430,0x3E2FF9A0
data8 0xBE3EB0BFD86EA5E7
data4 0x3F4CCCC8,0x3E647FD6
data8 0x3E2E6A8C86B12760
data4 0x3F430C30,0x3E8B3AE7
data8 0x3E47574C5C0739BA
data4 0x3F3A2E88,0x3EA30C68
data8 0x3E20E30F13E8AF2F
data4 0x3F321640,0x3EB9CEC8
data8 0xBE42885BF2C630BD
data4 0x3F2AAAA8,0x3ECF9927
data8 0x3E497F3497E577C6
data4 0x3F23D708,0x3EE47FC5
data8 0x3E3E6A6EA6B0A5AB
data4 0x3F1D89D8,0x3EF8947D
data8 0xBDF43E3CD328D9BE
data4 0x3F17B420,0x3F05F3A1
data8 0x3E4094C30ADB090A
data4 0x3F124920,0x3F0F4303
data8 0xBE28FBB2FC1FE510
data4 0x3F0D3DC8,0x3F183EBF
data8 0x3E3A789510FDE3FA
data4 0x3F088888,0x3F20EC80
data8 0x3E508CE57CC8C98F
data4 0x3F042108,0x3F29516A
data8 0xBE534874A223106C
LOCAL_OBJECT_END(Constants_G_H_h1)
// Z2 - 16 bit fixed
LOCAL_OBJECT_START(Constants_Z_2)
data4 0x00008000
data4 0x00007F81
data4 0x00007F02
data4 0x00007E85
data4 0x00007E08
data4 0x00007D8D
data4 0x00007D12
data4 0x00007C98
data4 0x00007C20
data4 0x00007BA8
data4 0x00007B31
data4 0x00007ABB
data4 0x00007A45
data4 0x000079D1
data4 0x0000795D
data4 0x000078EB
LOCAL_OBJECT_END(Constants_Z_2)
// G2 and H2 - IEEE single and h2 - IEEE double
LOCAL_OBJECT_START(Constants_G_H_h2)
data4 0x3F800000,0x00000000
data8 0x0000000000000000
data4 0x3F7F00F8,0x3B7F875D
data8 0x3DB5A11622C42273
data4 0x3F7E03F8,0x3BFF015B
data8 0x3DE620CF21F86ED3
data4 0x3F7D08E0,0x3C3EE393
data8 0xBDAFA07E484F34ED
data4 0x3F7C0FC0,0x3C7E0586
data8 0xBDFE07F03860BCF6
data4 0x3F7B1880,0x3C9E75D2
data8 0x3DEA370FA78093D6
data4 0x3F7A2328,0x3CBDC97A
data8 0x3DFF579172A753D0
data4 0x3F792FB0,0x3CDCFE47
data8 0x3DFEBE6CA7EF896B
data4 0x3F783E08,0x3CFC15D0
data8 0x3E0CF156409ECB43
data4 0x3F774E38,0x3D0D874D
data8 0xBE0B6F97FFEF71DF
data4 0x3F766038,0x3D1CF49B
data8 0xBE0804835D59EEE8
data4 0x3F757400,0x3D2C531D
data8 0x3E1F91E9A9192A74
data4 0x3F748988,0x3D3BA322
data8 0xBE139A06BF72A8CD
data4 0x3F73A0D0,0x3D4AE46F
data8 0x3E1D9202F8FBA6CF
data4 0x3F72B9D0,0x3D5A1756
data8 0xBE1DCCC4BA796223
data4 0x3F71D488,0x3D693B9D
data8 0xBE049391B6B7C239
LOCAL_OBJECT_END(Constants_G_H_h2)
// G3 and H3 - IEEE single and h3 - IEEE double
LOCAL_OBJECT_START(Constants_G_H_h3)
data4 0x3F7FFC00,0x38800100
data8 0x3D355595562224CD
data4 0x3F7FF400,0x39400480
data8 0x3D8200A206136FF6
data4 0x3F7FEC00,0x39A00640
data8 0x3DA4D68DE8DE9AF0
data4 0x3F7FE400,0x39E00C41
data8 0xBD8B4291B10238DC
data4 0x3F7FDC00,0x3A100A21
data8 0xBD89CCB83B1952CA
data4 0x3F7FD400,0x3A300F22
data8 0xBDB107071DC46826
data4 0x3F7FCC08,0x3A4FF51C
data8 0x3DB6FCB9F43307DB
data4 0x3F7FC408,0x3A6FFC1D
data8 0xBD9B7C4762DC7872
data4 0x3F7FBC10,0x3A87F20B
data8 0xBDC3725E3F89154A
data4 0x3F7FB410,0x3A97F68B
data8 0xBD93519D62B9D392
data4 0x3F7FAC18,0x3AA7EB86
data8 0x3DC184410F21BD9D
data4 0x3F7FA420,0x3AB7E101
data8 0xBDA64B952245E0A6
data4 0x3F7F9C20,0x3AC7E701
data8 0x3DB4B0ECAABB34B8
data4 0x3F7F9428,0x3AD7DD7B
data8 0x3D9923376DC40A7E
data4 0x3F7F8C30,0x3AE7D474
data8 0x3DC6E17B4F2083D3
data4 0x3F7F8438,0x3AF7CBED
data8 0x3DAE314B811D4394
data4 0x3F7F7C40,0x3B03E1F3
data8 0xBDD46F21B08F2DB1
data4 0x3F7F7448,0x3B0BDE2F
data8 0xBDDC30A46D34522B
data4 0x3F7F6C50,0x3B13DAAA
data8 0x3DCB0070B1F473DB
data4 0x3F7F6458,0x3B1BD766
data8 0xBDD65DDC6AD282FD
data4 0x3F7F5C68,0x3B23CC5C
data8 0xBDCDAB83F153761A
data4 0x3F7F5470,0x3B2BC997
data8 0xBDDADA40341D0F8F
data4 0x3F7F4C78,0x3B33C711
data8 0x3DCD1BD7EBC394E8
data4 0x3F7F4488,0x3B3BBCC6
data8 0xBDC3532B52E3E695
data4 0x3F7F3C90,0x3B43BAC0
data8 0xBDA3961EE846B3DE
data4 0x3F7F34A0,0x3B4BB0F4
data8 0xBDDADF06785778D4
data4 0x3F7F2CA8,0x3B53AF6D
data8 0x3DCC3ED1E55CE212
data4 0x3F7F24B8,0x3B5BA620
data8 0xBDBA31039E382C15
data4 0x3F7F1CC8,0x3B639D12
data8 0x3D635A0B5C5AF197
data4 0x3F7F14D8,0x3B6B9444
data8 0xBDDCCB1971D34EFC
data4 0x3F7F0CE0,0x3B7393BC
data8 0x3DC7450252CD7ADA
data4 0x3F7F04F0,0x3B7B8B6D
data8 0xBDB68F177D7F2A42
LOCAL_OBJECT_END(Constants_G_H_h3)
// Floating Point Registers
FR_Input_X = f8
FR_Y_hi = f34
FR_Y_lo = f35
FR_Scale = f36
FR_X_Prime = f37
FR_S_hi = f38
FR_W = f39
FR_G = f40
FR_H = f41
FR_wsq = f42
FR_w4 = f43
FR_h = f44
FR_w6 = f45
FR_G2 = f46
FR_H2 = f47
FR_poly_lo = f48
FR_P8 = f49
FR_poly_hi = f50
FR_P7 = f51
FR_h2 = f52
FR_rsq = f53
FR_P6 = f54
FR_r = f55
FR_log2_hi = f56
FR_log2_lo = f57
FR_p87 = f58
FR_p876 = f58
FR_p8765 = f58
FR_float_N = f59
FR_Q4 = f60
FR_p43 = f61
FR_p432 = f61
FR_p4321 = f61
FR_P4 = f62
FR_G3 = f63
FR_H3 = f64
FR_h3 = f65
FR_Q3 = f66
FR_P3 = f67
FR_Q2 = f68
FR_P2 = f69
FR_1LN10_hi = f70
FR_Q1 = f71
FR_P1 = f72
FR_1LN10_lo = f73
FR_P5 = f74
FR_rcub = f75
FR_Output_X_tmp = f76
FR_Neg_One = f77
FR_Z = f78
FR_AA = f79
FR_BB = f80
FR_S_lo = f81
FR_2_to_minus_N = f82
FR_X = f8
FR_Y = f0
FR_RESULT = f76
// General Purpose Registers
GR_ad_p = r33
GR_Index1 = r34
GR_Index2 = r35
GR_signif = r36
GR_X_0 = r37
GR_X_1 = r38
GR_X_2 = r39
GR_minus_N = r39
GR_Z_1 = r40
GR_Z_2 = r41
GR_N = r42
GR_Bias = r43
GR_M = r44
GR_Index3 = r45
GR_exp_2tom80 = r45
GR_ad_p2 = r46
GR_exp_mask = r47
GR_exp_2tom7 = r48
GR_ad_ln10 = r49
GR_ad_tbl_1 = r50
GR_ad_tbl_2 = r51
GR_ad_tbl_3 = r52
GR_ad_q = r53
GR_ad_z_1 = r54
GR_ad_z_2 = r55
GR_ad_z_3 = r56
GR_minus_N = r39
//
// Added for unwind support
//
GR_SAVE_PFS = r50
GR_SAVE_B0 = r51
GR_SAVE_GP = r52
GR_Parameter_X = r53
GR_Parameter_Y = r54
GR_Parameter_RESULT = r55
GR_Parameter_TAG = r56
.section .text
GLOBAL_IEEE754_ENTRY(log1pl)
{ .mfi
alloc r32 = ar.pfs,0,21,4,0
fclass.m p6, p0 = FR_Input_X, 0x1E3 // Test for natval, nan, inf
nop.i 999
}
{ .mfi
addl GR_ad_z_1 = @ltoff(Constants_Z_1#),gp
fma.s1 FR_Z = FR_Input_X, f1, f1 // x+1
nop.i 999
}
;;
{ .mfi
nop.m 999
fmerge.ns FR_Neg_One = f1, f1 // Form -1.0
nop.i 999
}
{ .mfi
nop.m 999
fnorm.s1 FR_X_Prime = FR_Input_X // Normalize x
nop.i 999
}
;;
{ .mfi
ld8 GR_ad_z_1 = [GR_ad_z_1] // Get pointer to Constants_Z_1
nop.f 999
mov GR_exp_2tom7 = 0x0fff8 // Exponent of 2^-7
}
;;
{ .mfb
getf.sig GR_signif = FR_Z // Get significand of x+1
fcmp.eq.s1 p9, p0 = FR_Input_X, f0 // Test for x=0
(p6) br.cond.spnt LOG1P_special // Branch for nan, inf, natval
}
;;
{ .mfi
add GR_ad_tbl_1 = 0x040, GR_ad_z_1 // Point to Constants_G_H_h1
fcmp.lt.s1 p13, p0 = FR_X_Prime, FR_Neg_One // Test for x<-1
add GR_ad_p = -0x100, GR_ad_z_1 // Point to Constants_P
}
{ .mfi
add GR_ad_z_2 = 0x140, GR_ad_z_1 // Point to Constants_Z_2
nop.f 999
add GR_ad_tbl_2 = 0x180, GR_ad_z_1 // Point to Constants_G_H_h2
}
;;
{ .mfi
add GR_ad_q = 0x080, GR_ad_p // Point to Constants_Q
fcmp.eq.s1 p8, p0 = FR_X_Prime, FR_Neg_One // Test for x=-1
extr.u GR_Index1 = GR_signif, 59, 4 // Get high 4 bits of signif
}
{ .mfb
add GR_ad_tbl_3 = 0x280, GR_ad_z_1 // Point to Constants_G_H_h3
nop.f 999
(p9) br.ret.spnt b0 // Exit if x=0, return input
}
;;
{ .mfi
shladd GR_ad_z_1 = GR_Index1, 2, GR_ad_z_1 // Point to Z_1
fclass.nm p10, p0 = FR_Input_X, 0x1FF // Test for unsupported
extr.u GR_X_0 = GR_signif, 49, 15 // Get high 15 bits of significand
}
{ .mfi
ldfe FR_P8 = [GR_ad_p],16 // Load P_8 for near1 path
fsub.s1 FR_W = FR_X_Prime, f0 // W = x
add GR_ad_ln10 = 0x060, GR_ad_q // Point to Constants_1_by_LN10
}
;;
{ .mfi
ld4 GR_Z_1 = [GR_ad_z_1] // Load Z_1
fmax.s1 FR_AA = FR_X_Prime, f1 // For S_lo, form AA = max(X,1.0)
mov GR_exp_mask = 0x1FFFF // Create exponent mask
}
{ .mib
shladd GR_ad_tbl_1 = GR_Index1, 4, GR_ad_tbl_1 // Point to G_1
mov GR_Bias = 0x0FFFF // Create exponent bias
(p13) br.cond.spnt LOG1P_LT_Minus_1 // Branch if x<-1
}
;;
{ .mfb
ldfps FR_G, FR_H = [GR_ad_tbl_1],8 // Load G_1, H_1
fmerge.se FR_S_hi = f1,FR_Z // Form |x+1|
(p8) br.cond.spnt LOG1P_EQ_Minus_1 // Branch if x=-1
}
;;
{ .mmb
getf.exp GR_N = FR_Z // Get N = exponent of x+1
ldfd FR_h = [GR_ad_tbl_1] // Load h_1
(p10) br.cond.spnt LOG1P_unsupported // Branch for unsupported type
}
;;
{ .mfi
ldfe FR_log2_hi = [GR_ad_q],16 // Load log2_hi
fcmp.eq.s0 p8, p0 = FR_Input_X, f0 // Dummy op to flag denormals
pmpyshr2.u GR_X_1 = GR_X_0,GR_Z_1,15 // Get bits 30-15 of X_0 * Z_1
}
;;
//
// For performance, don't use result of pmpyshr2.u for 4 cycles.
//
{ .mmi
ldfe FR_log2_lo = [GR_ad_q],16 // Load log2_lo
sub GR_N = GR_N, GR_Bias
mov GR_exp_2tom80 = 0x0ffaf // Exponent of 2^-80
}
;;
{ .mfi
ldfe FR_Q4 = [GR_ad_q],16 // Load Q4
fms.s1 FR_S_lo = FR_AA, f1, FR_Z // Form S_lo = AA - Z
sub GR_minus_N = GR_Bias, GR_N // Form exponent of 2^(-N)
}
;;
{ .mmf
ldfe FR_Q3 = [GR_ad_q],16 // Load Q3
setf.sig FR_float_N = GR_N // Put integer N into rightmost significand
fmin.s1 FR_BB = FR_X_Prime, f1 // For S_lo, form BB = min(X,1.0)
}
;;
{ .mmi
getf.exp GR_M = FR_W // Get signexp of w = x
ldfe FR_Q2 = [GR_ad_q],16 // Load Q2
extr.u GR_Index2 = GR_X_1, 6, 4 // Extract bits 6-9 of X_1
}
;;
{ .mmi
ldfe FR_Q1 = [GR_ad_q] // Load Q1
shladd GR_ad_z_2 = GR_Index2, 2, GR_ad_z_2 // Point to Z_2
add GR_ad_p2 = 0x30,GR_ad_p // Point to P_4
}
;;
{ .mmi
ld4 GR_Z_2 = [GR_ad_z_2] // Load Z_2
shladd GR_ad_tbl_2 = GR_Index2, 4, GR_ad_tbl_2 // Point to G_2
and GR_M = GR_exp_mask, GR_M // Get exponent of w = x
}
;;
{ .mmi
ldfps FR_G2, FR_H2 = [GR_ad_tbl_2],8 // Load G_2, H_2
cmp.lt p8, p9 = GR_M, GR_exp_2tom7 // Test |x| < 2^-7
cmp.lt p7, p0 = GR_M, GR_exp_2tom80 // Test |x| < 2^-80
}
;;
// Small path is separate code
// p7 is for the small path: |x| < 2^-80
// near1 and regular paths are merged.
// p8 is for the near1 path: |x| < 2^-7
// p9 is for regular path: |x| >= 2^-7
{ .mfi
ldfd FR_h2 = [GR_ad_tbl_2] // Load h_2
nop.f 999
nop.i 999
}
{ .mfb
(p9) setf.exp FR_2_to_minus_N = GR_minus_N // Form 2^(-N)
(p7) fnma.s0 f8 = FR_X_Prime, FR_X_Prime, FR_X_Prime // Result x - x*x
(p7) br.ret.spnt b0 // Branch if |x| < 2^-80
}
;;
{ .mmi
(p8) ldfe FR_P7 = [GR_ad_p],16 // Load P_7 for near1 path
(p8) ldfe FR_P4 = [GR_ad_p2],16 // Load P_4 for near1 path
(p9) pmpyshr2.u GR_X_2 = GR_X_1,GR_Z_2,15 // Get bits 30-15 of X_1 * Z_2
}
;;
//
// For performance, don't use result of pmpyshr2.u for 4 cycles.
//
{ .mmf
(p8) ldfe FR_P6 = [GR_ad_p],16 // Load P_6 for near1 path
(p8) ldfe FR_P3 = [GR_ad_p2],16 // Load P_3 for near1 path
(p9) fma.s1 FR_S_lo = FR_S_lo, f1, FR_BB // S_lo = S_lo + BB
}
;;
{ .mmf
(p8) ldfe FR_P5 = [GR_ad_p],16 // Load P_5 for near1 path
(p8) ldfe FR_P2 = [GR_ad_p2],16 // Load P_2 for near1 path
(p8) fmpy.s1 FR_wsq = FR_W, FR_W // wsq = w * w for near1 path
}
;;
{ .mmi
(p8) ldfe FR_P1 = [GR_ad_p2],16 ;; // Load P_1 for near1 path
nop.m 999
(p9) extr.u GR_Index3 = GR_X_2, 1, 5 // Extract bits 1-5 of X_2
}
;;
{ .mfi
(p9) shladd GR_ad_tbl_3 = GR_Index3, 4, GR_ad_tbl_3 // Point to G_3
(p9) fcvt.xf FR_float_N = FR_float_N
nop.i 999
}
;;
{ .mfi
(p9) ldfps FR_G3, FR_H3 = [GR_ad_tbl_3],8 // Load G_3, H_3
nop.f 999
nop.i 999
}
;;
{ .mfi
(p9) ldfd FR_h3 = [GR_ad_tbl_3] // Load h_3
(p9) fmpy.s1 FR_G = FR_G, FR_G2 // G = G_1 * G_2
nop.i 999
}
{ .mfi
nop.m 999
(p9) fadd.s1 FR_H = FR_H, FR_H2 // H = H_1 + H_2
nop.i 999
}
;;
{ .mmf
nop.m 999
nop.m 999
(p9) fadd.s1 FR_h = FR_h, FR_h2 // h = h_1 + h_2
}
;;
{ .mfi
nop.m 999
(p8) fmpy.s1 FR_w4 = FR_wsq, FR_wsq // w4 = w^4 for near1 path
nop.i 999
}
{ .mfi
nop.m 999
(p8) fma.s1 FR_p87 = FR_W, FR_P8, FR_P7 // p87 = w * P8 + P7
nop.i 999
}
;;
{ .mfi
nop.m 999
(p9) fma.s1 FR_S_lo = FR_S_lo, FR_2_to_minus_N, f0 // S_lo = S_lo * 2^(-N)
nop.i 999
}
{ .mfi
nop.m 999
(p8) fma.s1 FR_p43 = FR_W, FR_P4, FR_P3 // p43 = w * P4 + P3
nop.i 999
}
;;
{ .mfi
nop.m 999
(p9) fmpy.s1 FR_G = FR_G, FR_G3 // G = (G_1 * G_2) * G_3
nop.i 999
}
{ .mfi
nop.m 999
(p9) fadd.s1 FR_H = FR_H, FR_H3 // H = (H_1 + H_2) + H_3
nop.i 999
}
;;
{ .mfi
nop.m 999
(p9) fadd.s1 FR_h = FR_h, FR_h3 // h = (h_1 + h_2) + h_3
nop.i 999
}
{ .mfi
nop.m 999
(p8) fmpy.s1 FR_w6 = FR_w4, FR_wsq // w6 = w^6 for near1 path
nop.i 999
}
;;
{ .mfi
nop.m 999
(p8) fma.s1 FR_p432 = FR_W, FR_p43, FR_P2 // p432 = w * p43 + P2
nop.i 999
}
{ .mfi
nop.m 999
(p8) fma.s1 FR_p876 = FR_W, FR_p87, FR_P6 // p876 = w * p87 + P6
nop.i 999
}
;;
{ .mfi
nop.m 999
(p9) fms.s1 FR_r = FR_G, FR_S_hi, f1 // r = G * S_hi - 1
nop.i 999
}
{ .mfi
nop.m 999
(p9) fma.s1 FR_Y_hi = FR_float_N, FR_log2_hi, FR_H // Y_hi = N * log2_hi + H
nop.i 999
}
;;
{ .mfi
nop.m 999
(p9) fma.s1 FR_h = FR_float_N, FR_log2_lo, FR_h // h = N * log2_lo + h
nop.i 999
}
;;
{ .mfi
nop.m 999
(p9) fma.s1 FR_r = FR_G, FR_S_lo, FR_r // r = G * S_lo + (G * S_hi - 1)
nop.i 999
}
;;
{ .mfi
nop.m 999
(p8) fma.s1 FR_p4321 = FR_W, FR_p432, FR_P1 // p4321 = w * p432 + P1
nop.i 999
}
{ .mfi
nop.m 999
(p8) fma.s1 FR_p8765 = FR_W, FR_p876, FR_P5 // p8765 = w * p876 + P5
nop.i 999
}
;;
{ .mfi
nop.m 999
(p9) fma.s1 FR_poly_lo = FR_r, FR_Q4, FR_Q3 // poly_lo = r * Q4 + Q3
nop.i 999
}
{ .mfi
nop.m 999
(p9) fmpy.s1 FR_rsq = FR_r, FR_r // rsq = r * r
nop.i 999
}
;;
{ .mfi
nop.m 999
(p8) fma.s1 FR_Y_lo = FR_wsq, FR_p4321, f0 // Y_lo = wsq * p4321
nop.i 999
}
{ .mfi
nop.m 999
(p8) fma.s1 FR_Y_hi = FR_W, f1, f0 // Y_hi = w for near1 path
nop.i 999
}
;;
{ .mfi
nop.m 999
(p9) fma.s1 FR_poly_lo = FR_poly_lo, FR_r, FR_Q2 // poly_lo = poly_lo * r + Q2
nop.i 999
}
{ .mfi
nop.m 999
(p9) fma.s1 FR_rcub = FR_rsq, FR_r, f0 // rcub = r^3
nop.i 999
}
;;
{ .mfi
nop.m 999
(p8) fma.s1 FR_Y_lo = FR_w6, FR_p8765,FR_Y_lo // Y_lo = w6 * p8765 + w2 * p4321
nop.i 999
}
;;
{ .mfi
nop.m 999
(p9) fma.s1 FR_poly_hi = FR_Q1, FR_rsq, FR_r // poly_hi = Q1 * rsq + r
nop.i 999
}
;;
{ .mfi
nop.m 999
(p9) fma.s1 FR_poly_lo = FR_poly_lo, FR_rcub, FR_h // poly_lo = poly_lo*r^3 + h
nop.i 999
}
;;
{ .mfi
nop.m 999
(p9) fadd.s1 FR_Y_lo = FR_poly_hi, FR_poly_lo // Y_lo = poly_hi + poly_lo
nop.i 999
}
;;
// Remainder of code is common for near1 and regular paths
{ .mfb
nop.m 999
fadd.s0 f8 = FR_Y_lo,FR_Y_hi // Result=Y_lo+Y_hi
br.ret.sptk b0 // Common exit for 2^-80 < x < inf
}
;;
// Here if x=-1
LOG1P_EQ_Minus_1:
//
// If x=-1 raise divide by zero and return -inf
//
{ .mfi
mov GR_Parameter_TAG = 138
fsub.s1 FR_Output_X_tmp = f0, f1
nop.i 999
}
;;
{ .mfb
nop.m 999
frcpa.s0 FR_Output_X_tmp, p8 = FR_Output_X_tmp, f0
br.cond.sptk __libm_error_region
}
;;
LOG1P_special:
{ .mfi
nop.m 999
fclass.m.unc p8, p0 = FR_Input_X, 0x1E1 // Test for natval, nan, +inf
nop.i 999
}
;;
//
// For SNaN raise invalid and return QNaN.
// For QNaN raise invalid and return QNaN.
// For +Inf return +Inf.
//
{ .mfb
nop.m 999
(p8) fmpy.s0 f8 = FR_Input_X, f1
(p8) br.ret.sptk b0 // Return for natval, nan, +inf
}
;;
//
// For -Inf raise invalid and return QNaN.
//
{ .mfb
mov GR_Parameter_TAG = 139
fmpy.s0 FR_Output_X_tmp = FR_Input_X, f0
br.cond.sptk __libm_error_region
}
;;
LOG1P_unsupported:
//
// Return generated NaN or other value.
//
{ .mfb
nop.m 999
fmpy.s0 f8 = FR_Input_X, f0
br.ret.sptk b0
}
;;
// Here if -inf < x < -1
LOG1P_LT_Minus_1:
//
// Deal with x < -1 in a special way - raise
// invalid and produce QNaN indefinite.
//
{ .mfb
mov GR_Parameter_TAG = 139
frcpa.s0 FR_Output_X_tmp, p8 = f0, f0
br.cond.sptk __libm_error_region
}
;;
GLOBAL_IEEE754_END(log1pl)
libm_alias_ldouble_other (__log1p, log1p)
LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
};;
{ .mmi
stfe [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
{ .mib
stfe [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y
nop.b 0 // Parameter 3 address
}
{ .mib
stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
nop.m 999
nop.m 999
add GR_Parameter_RESULT = 48,sp
};;
{ .mmi
ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
LOCAL_LIBM_END(__libm_error_region#)
.type __libm_error_support#,@function
.global __libm_error_support#
|