1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
|
.file "libm_ldexpl.s"
// Copyright (c) 2000 - 2003, Intel Corporation
// All rights reserved.
//
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History
//==============================================================
// 02/02/00 Initial version
// 01/26/01 ldexpl completely reworked and now standalone version
// 01/04/02 Added handling for int 32 or 64 bits
// 05/20/02 Cleaned up namespace and sf0 syntax
// 02/10/03 Reordered header: .section, .global, .proc, .align
// 08/04/03 Improved performance
//
// API
//==============================================================
// long double __libm_ldexpl (long double x, int n, int int_type)
// input floating point f8 and int n (r34), int int_type (r35)
// output floating point f8
//
// int_type = 0 if int is 32 bits
// int_type = 1 if int is 64 bits
//
// Returns x* 2**n using an fma and detects overflow
// and underflow.
//
//
// Strategy:
// Compute biased exponent of result exp_Result = N + exp_X
// Break into ranges:
// exp_Result > 0x13ffe -> Certain overflow
// exp_Result = 0x13ffe -> Possible overflow
// 0x0c001 <= exp_Result < 0x13ffe -> No over/underflow (main path)
// 0x0c001 - 63 <= exp_Result < 0x0c001 -> Possible underflow
// exp_Result < 0x0c001 - 63 -> Certain underflow
FR_Big = f6
FR_NBig = f7
FR_Floating_X = f8
FR_Result = f8
FR_Result2 = f9
FR_Result3 = f10
FR_Norm_X = f11
FR_Two_N = f12
GR_neg_ov_limit= r14
GR_N_Biased = r15
GR_Big = r16
GR_NBig = r17
GR_exp_Result = r18
GR_pos_ov_limit= r19
GR_Bias = r20
GR_N_as_int = r21
GR_signexp_X = r22
GR_exp_X = r23
GR_exp_mask = r24
GR_max_exp = r25
GR_min_exp = r26
GR_min_den_exp = r27
GR_SAVE_B0 = r32
GR_SAVE_GP = r33
GR_SAVE_PFS = r34
GR_Parameter_X = r35
GR_Parameter_Y = r36
GR_Parameter_RESULT = r37
GR_Tag = r38
.section .text
GLOBAL_LIBM_ENTRY(__libm_ldexpl)
//
// Is x NAN, INF, ZERO, +-?
// Build the exponent Bias
//
{ .mfi
getf.exp GR_signexp_X = FR_Floating_X // Get signexp of x
fclass.m p6,p0 = FR_Floating_X, 0xe7 // @snan | @qnan | @inf | @zero
mov GR_Bias = 0x0ffff
}
//
// Normalize x
// Is integer type 32 bits?
//
{ .mfi
mov GR_Big = 35000 // If N this big then certain overflow
fnorm.s1 FR_Norm_X = FR_Floating_X
cmp.eq p8,p9 = r35,r0
}
;;
// Sign extend N if int is 32 bits
{ .mfi
(p9) mov GR_N_as_int = r34 // Copy N if int is 64 bits
fclass.m p9,p0 = FR_Floating_X, 0x0b // Test for x=unorm
(p8) sxt4 GR_N_as_int = r34 // Sign extend N if int is 32 bits
}
{ .mfi
mov GR_NBig = -35000 // If N this small then certain underflow
nop.f 0
mov GR_max_exp = 0x13ffe // Exponent of maximum long double
}
;;
// Create biased exponent for 2**N
{ .mfi
add GR_N_Biased = GR_Bias,GR_N_as_int
nop.f 0
cmp.ge p7, p0 = GR_N_as_int, GR_Big // Certain overflow?
}
{ .mib
cmp.le p8, p0 = GR_N_as_int, GR_NBig // Certain underflow?
mov GR_min_exp = 0x0c001 // Exponent of minimum long double
(p9) br.cond.spnt LDEXPL_UNORM // Branch if x=unorm
}
;;
LDEXPL_COMMON:
// Main path continues. Also return here from x=unorm path.
// Create 2**N
.pred.rel "mutex",p7,p8
{ .mfi
setf.exp FR_Two_N = GR_N_Biased
nop.f 0
(p7) mov GR_N_as_int = GR_Big // Limit max N
}
{ .mfi
(p8) mov GR_N_as_int = GR_NBig // Limit min N
nop.f 0
(p8) cmp.eq p7,p0 = r0,r0 // Set p7 if |N| big
}
;;
//
// Create biased exponent for 2**N for N big
// Is N zero?
//
{ .mfi
(p7) add GR_N_Biased = GR_Bias,GR_N_as_int
nop.f 0
cmp.eq.or p6,p0 = r34,r0
}
{ .mfi
mov GR_pos_ov_limit = 0x13fff // Exponent for positive overflow
nop.f 0
mov GR_exp_mask = 0x1ffff // Exponent mask
}
;;
//
// Create 2**N for N big
// Return x when N = 0 or X = Nan, Inf, Zero
//
{ .mfi
(p7) setf.exp FR_Two_N = GR_N_Biased
nop.f 0
mov GR_min_den_exp = 0x0c001 - 63 // Exp of min denorm long dble
}
{ .mfb
and GR_exp_X = GR_exp_mask, GR_signexp_X
(p6) fma.s0 FR_Result = FR_Floating_X, f1, f0
(p6) br.ret.spnt b0
}
;;
//
// Raise Denormal operand flag with compare
// Compute biased result exponent
//
{ .mfi
add GR_exp_Result = GR_exp_X, GR_N_as_int
fcmp.ge.s0 p0,p11 = FR_Floating_X,f0
mov GR_neg_ov_limit = 0x33fff // Exponent for negative overflow
}
;;
//
// Do final operation
//
{ .mfi
cmp.lt p7,p6 = GR_exp_Result, GR_max_exp // Test no overflow
fma.s0 FR_Result = FR_Two_N,FR_Norm_X,f0
cmp.lt p9,p0 = GR_exp_Result, GR_min_den_exp // Test sure underflow
}
{ .mfb
nop.m 0
nop.f 0
(p9) br.cond.spnt LDEXPL_UNDERFLOW // Branch if certain underflow
}
;;
{ .mib
(p6) cmp.gt.unc p6,p8 = GR_exp_Result, GR_max_exp // Test sure overflow
(p7) cmp.ge.unc p7,p9 = GR_exp_Result, GR_min_exp // Test no over/underflow
(p7) br.ret.sptk b0 // Return from main path
}
;;
{ .bbb
(p6) br.cond.spnt LDEXPL_OVERFLOW // Branch if certain overflow
(p8) br.cond.spnt LDEXPL_POSSIBLE_OVERFLOW // Branch if possible overflow
(p9) br.cond.spnt LDEXPL_POSSIBLE_UNDERFLOW // Branch if possible underflow
}
;;
// Here if possible underflow.
// Resulting exponent: 0x0c001-63 <= exp_Result < 0x0c001
LDEXPL_POSSIBLE_UNDERFLOW:
//
// Here if possible overflow.
// Resulting exponent: 0x13ffe = exp_Result
LDEXPL_POSSIBLE_OVERFLOW:
// Set up necessary status fields
//
// S0 user supplied status
// S2 user supplied status + WRE + TD (Overflows)
// S3 user supplied status + FZ + TD (Underflows)
//
{ .mfi
nop.m 0
fsetc.s3 0x7F,0x41
nop.i 0
}
{ .mfi
nop.m 0
fsetc.s2 0x7F,0x42
nop.i 0
}
;;
//
// Do final operation with s2 and s3
//
{ .mfi
setf.exp FR_NBig = GR_neg_ov_limit
fma.s3 FR_Result3 = FR_Two_N,FR_Norm_X,f0
nop.i 0
}
{ .mfi
setf.exp FR_Big = GR_pos_ov_limit
fma.s2 FR_Result2 = FR_Two_N,FR_Norm_X,f0
nop.i 0
}
;;
// Check for overflow or underflow.
// Restore s3
// Restore s2
//
{ .mfi
nop.m 0
fsetc.s3 0x7F,0x40
nop.i 0
}
{ .mfi
nop.m 0
fsetc.s2 0x7F,0x40
nop.i 0
}
;;
//
// Is the result zero?
//
{ .mfi
nop.m 0
fclass.m p6, p0 = FR_Result3, 0x007
nop.i 0
}
{ .mfi
nop.m 0
fcmp.ge.s1 p7, p8 = FR_Result2 , FR_Big
nop.i 0
}
;;
//
// Detect masked underflow - Tiny + Inexact Only
//
{ .mfi
nop.m 0
(p6) fcmp.neq.unc.s1 p6, p0 = FR_Result , FR_Result2
nop.i 0
}
;;
//
// Is result bigger the allowed range?
// Branch out for underflow
//
{ .mfb
nop.m 0
(p8) fcmp.le.unc.s1 p9, p10 = FR_Result2 , FR_NBig
(p6) br.cond.spnt LDEXPL_UNDERFLOW
}
;;
//
// Branch out for overflow
//
{ .bbb
(p7) br.cond.spnt LDEXPL_OVERFLOW
(p9) br.cond.spnt LDEXPL_OVERFLOW
br.ret.sptk b0 // Return from main path.
}
;;
// Here if result overflows
LDEXPL_OVERFLOW:
{ .mib
alloc r32=ar.pfs,3,0,4,0
addl GR_Tag = 144, r0 // Set error tag for overflow
br.cond.sptk __libm_error_region // Call error support for overflow
}
;;
// Here if result underflows
LDEXPL_UNDERFLOW:
{ .mib
alloc r32=ar.pfs,3,0,4,0
addl GR_Tag = 145, r0 // Set error tag for underflow
br.cond.sptk __libm_error_region // Call error support for underflow
}
;;
// Here if x=unorm
LDEXPL_UNORM:
{ .mib
getf.exp GR_signexp_X = FR_Norm_X // Get signexp of normalized x
nop.i 0
br.cond.sptk LDEXPL_COMMON // Return to main path
}
;;
GLOBAL_LIBM_END(__libm_ldexpl)
LOCAL_LIBM_ENTRY(__libm_error_region)
//
// Get stack address of N
//
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs
}
//
// Adjust sp
//
{ .mfi
.fframe 64
add sp=-64,sp
nop.f 0
mov GR_SAVE_GP=gp
};;
//
// Store N on stack in correct position
// Locate the address of x on stack
//
{ .mmi
st8 [GR_Parameter_Y] = GR_N_as_int,16
add GR_Parameter_X = 16,sp
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0
};;
//
// Store x on the stack.
// Get address for result on stack.
//
.body
{ .mib
stfe [GR_Parameter_X] = FR_Norm_X
add GR_Parameter_RESULT = 0,GR_Parameter_Y
nop.b 0
}
{ .mib
stfe [GR_Parameter_Y] = FR_Result
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support#
};;
//
// Get location of result on stack
//
{ .mmi
add GR_Parameter_RESULT = 48,sp
nop.m 0
nop.i 0
};;
//
// Get the new result
//
{ .mmi
ldfe FR_Result = [GR_Parameter_RESULT]
.restore sp
add sp = 64,sp
mov b0 = GR_SAVE_B0
};;
//
// Restore gp, ar.pfs and return
//
{ .mib
mov gp = GR_SAVE_GP
mov ar.pfs = GR_SAVE_PFS
br.ret.sptk b0
};;
LOCAL_LIBM_END(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
|