about summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/s_erfl.S
blob: 902539be48d094c1772cdd9001fa86df925158f2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
.file "erfl.s"


// Copyright (c) 2001 - 2003, Intel Corporation
// All rights reserved.
//
// Contributed 2001 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.

// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS 
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY 
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
// 
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at 
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History
//==============================================================
// 11/21/01  Initial version
// 05/20/02  Cleaned up namespace and sf0 syntax
// 08/14/02  Changed mli templates to mlx
// 02/06/03  Reordered header: .section, .global, .proc, .align
//
// API
//==============================================================
// long double erfl(long double)
//
// Overview of operation
//==============================================================
//
// Algorithm description
// ---------------------
//
// There are 4 paths:
//
// 1. Special path: x = 0, Inf, NaNs, denormal
//    Return erfl(x) = +/-0.0 for zeros
//    Return erfl(x) = QNaN for NaNs
//    Return erfl(x) = sign(x)*1.0 for Inf
//    Return erfl(x) = (A0H+A0L)*x + x^2, ((A0H+A0L) = 2.0/sqrt(Pi))
//                                             for denormals
//
// 2. [0;1/8] path: 0.0 < |x| < 1/8
//    Return erfl(x) = x*(A1H+A1L) + x^3*A3 + ... + x^15*A15
//
// 3. Main path: 1/8 <= |x| < 6.53
//    For several ranges of 1/8 <= |x| < 6.53
//    Return erfl(x) = sign(x)*((A0H+A0L) + y*(A1H+A1L) + y^2*(A2H+A2L) + 
//                                       + y^3*A3 + y^4*A4 + ... + y^25*A25 )
//    where y = (|x|/a) - b
//
//    For each range there is particular set of coefficients.
//    Below is the list of ranges:
//    1/8  <= |x| < 1/4     a = 0.125, b = 1.5
//    1/4  <= |x| < 1/2     a = 0.25,  b = 1.5
//    1/2  <= |x| < 1.0     a = 0.5,   b = 1.5
//    1.0  <= |x| < 2.0     a = 1.0,   b = 1.5
//    2.0  <= |x| < 3.25    a = 2.0,   b = 1.5
//    3.25 <= |x| < 4.0     a = 2.0,   b = 2.0
//    4.0  <= |x| < 6.53    a = 4.0,   b = 1.5
//    ( [3.25;4.0] subrange separated for monotonicity issues resolve )
//
// 4. Saturation path: 6.53 <= |x| < +INF 
//    Return erfl(x) = sign(x)*(1.0 - tiny_value)
//    (tiny_value ~ 1e-1233)
//
// Implementation notes
// --------------------
//
// 1. Special path: x = 0, INF, NaNa, denormals
//
//    This branch is cut off by one fclass operation.
//    Then zeros+nans, infinities and denormals processed separately.
//    For denormals we had to use multiprecision A0 coefficient to reach
//    necessary accuracy: (A0H+A0L)*x-x^2
//
// 2. [0;1/8] path: 0.0 < |x| < 1/8
//
//    First coefficient of polynomial we must split to multiprecision too.
//    Also we can parallelise computations:
//    (x*(A1H+A1L)) calculated in parallel with "tail" (x^3*A3 + ... + x^15*A15)
//    Furthermore the second part is factorized using binary tree technique.
//
// 3. Main path: 1/8 <= |x| < 6.53
//
//    Multiprecision have to be performed only for first few
//    polynomial iterations (up to 3-rd x degree)
//    Here we use the same parallelisation way as above:
//    Split whole polynomial to first, "multiprecision" part, and second, 
//    so called "tail", native precision part.
//
//    1) Multiprecision part:  
//    [v1=(A0H+A0L)+y*(A1H+A1L)] + [v2=y^2*((A2H+A2L)+y*A3)]
//    v1 and v2 terms calculated in parallel
//
//    2) Tail part:
//    v3 = x^4 * ( A4 + x*A5 + ... + x^21*A25 )
//    v3 is splitted to 2 even parts (10 coefficient in each one).
//    These 2 parts are also factorized using binary tree technique.
//    
//    So Multiprecision and Tail parts cost is almost the same
//    and we have both results ready before final summation.
//
// 4. Saturation path: 6.53 <= |x| < +INF 
//
//    We use formula sign(x)*(1.0 - tiny_value) instead of simple sign(x)*1.0
//    just to meet IEEE requirements for different rounding modes in this case.
//
// Registers used
//==============================================================
// Floating Point registers used: 
// f8 - input & output
// f32 -> f90

// General registers used:  
// r2, r3, r32 -> r52 

// Predicate registers used:
// p0, p6 -> p11, p14, p15

// p6  - arg is zero, denormal or special IEEE
// p7  - arg is in [4;8] binary interval
// p8  - arg is in [3.25;4] interval
// p9  - arg < 1/8
// p10 - arg is NOT in [3.25;4] interval
// p11 - arg in saturation domain
// p14 - arg is positive
// p15 - arg is negative

// Assembly macros
//==============================================================
rDataPtr           = r2
rTailDataPtr       = r3

rBias              = r33
rSignBit           = r34
rInterval          = r35

rArgExp            = r36
rArgSig            = r37
r3p25Offset        = r38
r2to4              = r39
r1p25              = r40
rOffset            = r41
r1p5               = r42
rSaturation        = r43
r3p25Sign          = r44
rTiny              = r45
rAddr1             = r46
rAddr2             = r47
rTailAddr1         = r48
rTailAddr2         = r49
rTailOffset        = r50
rTailAddOffset     = r51
rShiftedDataPtr    = r52

//==============================================================
fA0H               = f32
fA0L               = f33
fA1H               = f34
fA1L               = f35
fA2H               = f36
fA2L               = f37
fA3                = f38
fA4                = f39
fA5                = f40
fA6                = f41
fA7                = f42
fA8                = f43
fA9                = f44
fA10               = f45
fA11               = f46
fA12               = f47
fA13               = f48
fA14               = f49
fA15               = f50
fA16               = f51
fA17               = f52
fA18               = f53
fA19               = f54
fA20               = f55 
fA21               = f56 
fA22               = f57 
fA23               = f58
fA24               = f59
fA25               = f60

fArgSqr            = f61
fArgCube           = f62
fArgFour           = f63
fArgEight          = f64

fArgAbsNorm        = f65
fArgAbsNorm2       = f66
fArgAbsNorm2L      = f67
fArgAbsNorm3       = f68
fArgAbsNorm4       = f69
fArgAbsNorm11      = f70

fRes               = f71
fResH              = f72
fResL              = f73
fRes1H             = f74
fRes1L             = f75
fRes1Hd            = f76
fRes2H             = f77
fRes2L             = f78
fRes3H             = f79
fRes3L             = f80
fRes4              = f81

fTT                = f82 
fTH                = f83
fTL                = f84
fTT2               = f85 
fTH2               = f86
fTL2               = f87

f1p5               = f88
f2p0               = f89
fTiny              = f90


// Data tables
//==============================================================
RODATA

.align 64
LOCAL_OBJECT_START(erfl_data)
////////// Main tables ///////////
_0p125_to_0p25_data: // exp = 2^-3
// Polynomial coefficients for the erf(x), 1/8 <= |x| < 1/4 
data8 0xACD9ED470F0BB048, 0x0000BFF4 //A3 = -6.5937529303909561891162915809e-04
data8 0xBF6A254428DDB452 //A2H = -3.1915980570631852578089571182e-03
data8 0xBC131B3BE3AC5079 //A2L = -2.5893976889070198978842231134e-19
data8 0x3FC16E2D7093CD8C //A1H = 1.3617485043469590433318217038e-01
data8 0x3C6979A52F906B4C //A1L = 1.1048096806003284897639351952e-17
data8 0x3FCAC45E37FE2526 //A0H = 2.0911767705937583938791135552e-01
data8 0x3C648D48536C61E3 //A0L = 8.9129592834861155344147026365e-18
data8 0xD1FC135B4A30E746, 0x00003F90 //A25 = 6.3189963203954877364460345654e-34
data8 0xB1C79B06DD8C988C, 0x00003F97 //A24 = 6.8478253118093953461840838106e-32
data8 0xCC7AE121D1DEDA30, 0x0000BF9A //A23 = -6.3010264109146390803803408666e-31
data8 0x8927B8841D1E0CA8, 0x0000BFA1 //A22 = -5.4098171537601308358556861717e-29
data8 0xB4E84D6D0C8F3515, 0x00003FA4 //A21 = 5.7084320046554628404861183887e-28
data8 0xC190EAE69A67959A, 0x00003FAA //A20 = 3.9090359419467121266470910523e-26
data8 0x90122425D312F680, 0x0000BFAE //A19 = -4.6551806872355374409398000522e-25
data8 0xF8456C9C747138D6, 0x0000BFB3 //A18 = -2.5670639225386507569611436435e-23
data8 0xCDCAE0B3C6F65A3A, 0x00003FB7 //A17 = 3.4045511783329546779285646369e-22
data8 0x8F41909107C62DCC, 0x00003FBD //A16 = 1.5167830861896169812375771948e-20
data8 0x82F0FCB8A4B8C0A3, 0x0000BFC1 //A15 = -2.2182328575376704666050112195e-19
data8 0x92E992C58B7C3847, 0x0000BFC6 //A14 = -7.9641369349930600223371163611e-18
LOCAL_OBJECT_END(erfl_data)

LOCAL_OBJECT_START(_0p25_to_0p5_data)
// Polynomial coefficients for the erf(x), 1/4 <= |x| < 1/2 
data8 0xF083628E8F7CE71D, 0x0000BFF6 //A3 = -3.6699405305266733332335619531e-03
data8 0xBF978749A434FE4E //A2H = -2.2977018973732214746075186440e-02
data8 0xBC30B3FAFBC21107 //A2L = -9.0547407100537663337591537643e-19
data8 0x3FCF5F0CDAF15313 //A1H = 2.4508820238647696654332719390e-01
data8 0x3C1DFF29F5AD8117 //A1L = 4.0653155218104625249413579084e-19
data8 0x3FD9DD0D2B721F38 //A0H = 4.0411690943482225790717166092e-01
data8 0x3C874C71FEF1759E //A0L = 4.0416653425001310671815863946e-17
data8 0xA621D99B8C12595E, 0x0000BFAB //A25 = -6.7100271986703749013021666304e-26
data8 0xBD7BBACB439992E5, 0x00003FAE //A24 = 6.1225362452814749024566661525e-25
data8 0xFF2FEFF03A98E410, 0x00003FB2 //A23 = 1.3192871864994282747963195183e-23
data8 0xAE8180957ABE6FD5, 0x0000BFB6 //A22 = -1.4434787102181180110707433640e-22
data8 0xAF0566617B453AA6, 0x0000BFBA //A21 = -2.3163848847252215762970075142e-21
data8 0x8F33D3616B9B8257, 0x00003FBE //A20 = 3.0324297082969526400202995913e-20
data8 0xD58AB73354438856, 0x00003FC1 //A19 = 3.6175397854863872232142412590e-19
data8 0xD214550E2F3210DF, 0x0000BFC5 //A18 = -5.6942141660091333278722310354e-18
data8 0xE2CA60C328F3BBF5, 0x0000BFC8 //A17 = -4.9177359011428870333915211291e-17
data8 0x88D9BB274F9B3873, 0x00003FCD //A16 = 9.4959118337089189766177270051e-16
data8 0xCA4A00AB538A2DB2, 0x00003FCF //A15 = 5.6146496538690657993449251855e-15
data8 0x9CC8FFFBDDCF9853, 0x0000BFD4 //A14 = -1.3925319209173383944263942226e-13
LOCAL_OBJECT_END(_0p25_to_0p5_data)

LOCAL_OBJECT_START(_0p5_to_1_data)
// Polynomial coefficients for the erf(x), 1/2 <= |x| < 1 
data8 0xDB742C8FB372DBE0, 0x00003FF6 //A3 = 3.3485993187250381721535255963e-03
data8 0xBFBEDC5644353C26 //A2H = -1.2054957547410136142751468924e-01
data8 0xBC6D7215B023455F //A2L = -1.2770012232203569059818773287e-17
data8 0x3FD492E42D78D2C4 //A1H = 3.2146553459760363047337250464e-01
data8 0x3C83A163CAC22E05 //A1L = 3.4053365952542489137756724868e-17
data8 0x3FE6C1C9759D0E5F //A0H = 7.1115563365351508462453011816e-01
data8 0x3C8B1432F2CBC455 //A0L = 4.6974407716428899960674098333e-17
data8 0x95A6B92162813FF8, 0x00003FC3 //A25 = 1.0140763985766801318711038400e-18
data8 0xFE5EC3217F457B83, 0x0000BFC6 //A24 = -1.3789434273280972156856405853e-17
data8 0x9B49651031B5310B, 0x0000BFC8 //A23 = -3.3672435142472427475576375889e-17
data8 0xDBF73927E19B7C8D, 0x00003FCC //A22 = 7.6315938248752024965922341872e-16
data8 0xF55CBA3052730592, 0x00003FCB //A21 = 4.2563559623888750271176552350e-16
data8 0xA1DC9380DA82CFF6, 0x0000BFD2 //A20 = -3.5940500736023122607663701015e-14
data8 0xAAD1AE1067F3D577, 0x00003FD2 //A19 = 3.7929451192558641569555227613e-14
data8 0xCD1DB83F3B9D2090, 0x00003FD7 //A18 = 1.4574374961011929143375716362e-12
data8 0x87235ACB5E8BB298, 0x0000BFD9 //A17 = -3.8408559294899660346666452560e-12
data8 0xDA417B78FF9F46B4, 0x0000BFDC //A16 = -4.9625621225715971268115023451e-11
data8 0xF075762685484436, 0x00003FDE //A15 = 2.1869603559309150844390066920e-10
data8 0xB989FDB3795165C7, 0x00003FE1 //A14 = 1.3499740992928183247608593000e-09
LOCAL_OBJECT_END(_0p5_to_1_data)

LOCAL_OBJECT_START(_1_to_2_data)
// Polynomial coefficients for the erf(x), 1 <= |x| < 2.0 
data8 0x8E15015F5B55BEAC, 0x00003FFC //A3 = 1.3875200409423426678618977531e-01
data8 0xBFC6D5A95D0A1B7E //A2H = -1.7839543383544403942764233761e-01
data8 0xBC7499F704C80E02 //A2L = -1.7868888188464394090788198634e-17
data8 0x3FBE723726B824A8 //A1H = 1.1893028922362935961842822508e-01
data8 0x3C6B77F399C2AD27 //A1L = 1.1912589318015368492508652194e-17
data8 0x3FEEEA5557137ADF //A0H = 9.6610514647531064991170524081e-01
data8 0x3C963D0DDD0A762F //A0L = 7.7155271023949055047261953350e-17
data8 0x8FAA405DAD409771, 0x0000BFDB //A25 = -1.6332824616946528652252813763e-11
data8 0x941386F4697976D8, 0x0000BFDD //A24 = -6.7337295147729213955410252613e-11
data8 0xBCBE75234530B404, 0x00003FDF //A23 = 3.4332329029092304943838374908e-10
data8 0xF55E2CE71A00D040, 0x00003FDF //A22 = 4.4632156034175937694868068394e-10
data8 0xA6CADFE489D2671F, 0x0000BFE3 //A21 = -4.8543000253822277507724949798e-09
data8 0xA4C69F11FEAFB3A8, 0x00003FE2 //A20 = 2.3978044150868471771557059958e-09
data8 0xD63441E3BED59703, 0x00003FE6 //A19 = 4.9873285553412397317802071288e-08
data8 0xDFDAED9D3089D732, 0x0000BFE7 //A18 = -1.0424069510877052249228047044e-07
data8 0xB47287FF165756A5, 0x0000BFE9 //A17 = -3.3610945128073834488448164164e-07
data8 0xCDAF2DC0A79A9059, 0x00003FEB //A16 = 1.5324673941628851136481785187e-06
data8 0x9FD6A7B2ECE8EDA9, 0x00003FEA //A15 = 5.9544479989469083598476592569e-07
data8 0xEC6E63BB4507B585, 0x0000BFEE //A14 = -1.4092398243085031882423746824e-05
LOCAL_OBJECT_END(_1_to_2_data)

LOCAL_OBJECT_START(_2_to_3p25_data)
// Polynomial coefficients for the erf(x), 2 <= |x| < 3.25 
data8 0xCEDBA58E8EE6F055, 0x00003FF7 //A3 = 6.3128050215859026984338771121e-03
data8 0xBF5B60D5E974CBBD //A2H = -1.6710366233609740427984435840e-03
data8 0xBC0E11E2AEC18AF6 //A2L = -2.0376133202996259839305825162e-19
data8 0x3F32408E9BA3327E //A1H = 2.7850610389349567379974059733e-04
data8 0x3BE41010E4B3B224 //A1L = 3.3987633691879253781833531576e-20
data8 0x3FEFFFD1AC4135F9 //A0H = 9.9997790950300136092465663751e-01
data8 0x3C8EEAFA1E97EAE0 //A0L = 5.3633970564750967956196033852e-17
data8 0xBF9C6F2C6D7263C1, 0x00003FF0 //A25 = 4.5683639377039166585098497471e-05
data8 0xCB4167CC4798096D, 0x00003FF0 //A24 = 4.8459885139772945417160731273e-05
data8 0xE1394FECFE972D32, 0x0000BFF2 //A23 = -2.1479022581129892562916533804e-04
data8 0xC7F9E47581FC2A5F, 0x0000BFF2 //A22 = -1.9071211076537531370822343363e-04
data8 0xDD612EDFAA41BEAE, 0x00003FF2 //A21 = 2.1112405918671957390188348542e-04
data8 0x8C166AA4CB2AD8FD, 0x0000BFF4 //A20 = -5.3439165021555312536009227942e-04
data8 0xEFBE33D9F62B68D4, 0x0000BFF2 //A19 = -2.2863672131516067770956697877e-04
data8 0xCCB92F5D91562494, 0x00003FF5 //A18 = 1.5619154280865226092321881421e-03
data8 0x80A5DBE71D4BA0E2, 0x0000BFF6 //A17 = -1.9630109664962540123775799179e-03
data8 0xA0ADEB2D4C41347A, 0x0000BFF4 //A16 = -6.1294315248639348947483422457e-04
data8 0xB1F5D4911B911665, 0x00003FF7 //A15 = 5.4309165882071876864550213817e-03
data8 0xF2F3D8D21E8762E0, 0x0000BFF7 //A14 = -7.4143227286535936033409745884e-03
LOCAL_OBJECT_END(_2_to_3p25_data)

LOCAL_OBJECT_START(_4_to_6p53_data)
// Polynomial coefficients for the erf(x), 4 <= |x| < 6.53 
data8 0xDF3151BE8652827E, 0x00003FD5 //A3 = 3.9646979666953349095427642209e-13
data8 0xBD1C4A9787DF888B //A2H = -2.5127788450714750484839908889e-14
data8 0xB99B35483E4603FD //A2L = -3.3536613901268985626466020210e-31
data8 0x3CD2DBF507F1A1F3 //A1H = 1.0468963266736687758710258897e-15
data8 0x398A97B60913B4BD //A1L = 1.6388968267515149775818013207e-31
data8 0x3FEFFFFFFFFFFFFF //A0H = 9.9999999999999988897769753748e-01
data8 0x3C99CC25E658129E //A0L = 8.9502895736398715695745861054e-17
data8 0xB367B21294713D39, 0x00003FFB //A25 = 8.7600127403270828432337605471e-02
data8 0xCEE3A423ADEC0F4C, 0x00003FFD //A24 = 4.0408051429309221404807497715e-01
data8 0xC389626CF2D727C0, 0x00003FFE //A23 = 7.6381507072332210580356159947e-01
data8 0xD15A03E082D0A307, 0x00003FFE //A22 = 8.1777977210259904277239787430e-01
data8 0x8FD3DA92675E8E00, 0x00003FFE //A21 = 5.6182638239203638864793584264e-01
data8 0xFD375E6EE167AA58, 0x00003FFC //A20 = 2.4728152801285544751731937424e-01
data8 0x89A9482FADE66AE1, 0x00003FFB //A19 = 6.7217410998398471333985773237e-02
data8 0xC62E1F02606C04DD, 0x00003FF7 //A18 = 6.0479785358923404401184993359e-03
data8 0xEE7BF2BE71CC531C, 0x0000BFF5 //A17 = -1.8194898432032114199803271708e-03
data8 0x8084081981CDC79C, 0x0000BFF5 //A16 = -9.8049734947701208487713246099e-04
data8 0x8975DFB834C118C3, 0x0000BFF0 //A15 = -3.2773123965143773578608926094e-05
data8 0x965DA4A80008B7BC, 0x0000BFEE //A14 = -8.9624997201558650125662820562e-06
LOCAL_OBJECT_END(_4_to_6p53_data)

LOCAL_OBJECT_START(_3p25_to_4_data)
// Polynomial coefficients for the erf(x), 3.25 <= |x| < 4 
data8 0xB01D29846286CE08, 0x00003FEE //A3 = 1.0497207328743021499800978059e-05
data8 0xBEC10B1488AEB234 //A2H = -2.0317175474986489113480084279e-06
data8 0xBB7F19701B8B74F9 //A2L = -4.1159669348226960337518214996e-22
data8 0x3E910B1488AEB234 //A1H = 2.5396469343733111391850105348e-07
data8 0x3B4F1944906D5D60 //A1L = 5.1448487494628801547474934193e-23
data8 0x3FEFFFFFF7B91176 //A0H = 9.9999998458274208523732795584e-01
data8 0x3C70B2865615DB3F //A0L = 1.4482653192002495179309994964e-17
data8 0xA818D085D56F3021, 0x00003FEC //A25 = 2.5048394770210505593609705765e-06
data8 0xD9C5C509AAE5561F, 0x00003FEC //A24 = 3.2450636894654766492719395406e-06
data8 0x9682D71C549EEB07, 0x0000BFED //A23 = -4.4855801709974050650263470866e-06
data8 0xBC230E1EB6FBF8B9, 0x00003FEA //A22 = 7.0086469577174843181452303996e-07
data8 0xE1432649FF29D4DE, 0x0000BFEA //A21 = -8.3916747195472308725504497231e-07
data8 0xB40CEEBD2803D2F0, 0x0000BFEF //A20 = -2.1463694318102769992677291330e-05
data8 0xEAAB57ABFFA003EB, 0x00003FEF //A19 = 2.7974761309213643228699449426e-05
data8 0xFBFA4D0B893A5BFB, 0x0000BFEE //A18 = -1.5019043571612821858165073446e-05
data8 0xBB6AA248EED3E364, 0x0000BFF0 //A17 = -4.4683584873907316507141131797e-05
data8 0x86C1B3AE3E500ED9, 0x00003FF2 //A16 = 1.2851395412345761361068234880e-04
data8 0xB60729445F0C37B5, 0x0000BFF2 //A15 = -1.7359540313300841352152461287e-04
data8 0xCA389F9E707337B1, 0x00003FF1 //A14 = 9.6426575465763394281615740282e-05
LOCAL_OBJECT_END(_3p25_to_4_data)


//////// "Tail" tables //////////
LOCAL_OBJECT_START(_0p125_to_0p25_data_tail)
// Polynomial coefficients for the erf(x), 1/8 <= |x| < 1/4 
data8 0x93086CBD21ED3962, 0x00003FCA //A13 = 1.2753071968462837024755878679e-16
data8 0x83CB5045A6D4B419, 0x00003FCF //A12 = 3.6580237062957773626379648530e-15
data8 0x8FCDB723209690EB, 0x0000BFD3 //A11 = -6.3861616307180801527566117146e-14
data8 0xCAA173F680B5D56B, 0x0000BFD7 //A10 = -1.4397775466324880354578008779e-12
data8 0xF0CEA934AD6AC013, 0x00003FDB //A9 = 2.7376616955640415767655526857e-11
data8 0x81C69F9D0B5AB8EE, 0x00003FE0 //A8 = 4.7212187567505249115688961488e-10
data8 0xA8B590298C20A194, 0x0000BFE4 //A7 = -9.8201697105565925460801441797e-09
data8 0x84F3DE72AC964615, 0x0000BFE8 //A6 = -1.2382176987480830706988411266e-07
data8 0xC01A1398868CC4BD, 0x00003FEC //A5 = 2.8625408039722670291121341583e-06
data8 0xCC43247F4410C54A, 0x00003FEF //A4 = 2.4349960762505993017186935493e-05
LOCAL_OBJECT_END(_0p125_to_0p25_data_tail)

LOCAL_OBJECT_START(_0p25_to_0p5_data_tail)
// Polynomial coefficients for the erf(x), 1/4 <= |x| < 1/2 
data8 0x8CEAC59AF361B78A, 0x0000BFD6 //A13 = -5.0063802958258679384986669123e-13
data8 0x9BC67404F348C0CE, 0x00003FDB //A12 = 1.7709590771868743572061278273e-11
data8 0xF4B5D0348AFAAC7A, 0x00003FDB //A11 = 2.7820329729584630464848160970e-11
data8 0x83AB447FF619DA4A, 0x0000BFE2 //A10 = -1.9160363295631539615395477207e-09
data8 0x82115AB487202E7B, 0x00003FE0 //A9 = 4.7318386460142606822119637959e-10
data8 0xB84D5B0AE17054AA, 0x00003FE8 //A8 = 1.7164477188916895004843908951e-07
data8 0xB2E085C1C4AA06E5, 0x0000BFE9 //A7 = -3.3318445266863554512523957574e-07
data8 0xCD3CA2E6C3971666, 0x0000BFEE //A6 = -1.2233070175554502732980949519e-05
data8 0xBA445C53F8DD40E6, 0x00003FF0 //A5 = 4.4409521535330413551781808621e-05
data8 0xAA94D5E68033B764, 0x00003FF4 //A4 = 6.5071635765452563856926608000e-04
LOCAL_OBJECT_END(_0p25_to_0p5_data_tail)

LOCAL_OBJECT_START(_0p5_to_1_data_tail)
// Polynomial coefficients for the erf(x), 1/2 <= |x| < 1 
data8 0x9ED99EDF111CB785, 0x0000BFE4 //A13 = -9.2462916180079278241704711522e-09
data8 0xDEAF7539AE2FB062, 0x0000BFE5 //A12 = -2.5923990465973151101298441139e-08
data8 0xA392D5E5CC9DB1A7, 0x00003FE9 //A11 = 3.0467952847327075747032372101e-07
data8 0xC311A7619B96CA1A, 0x00003FE8 //A10 = 1.8167212632079596881709988649e-07
data8 0x82082E6B6A93F116, 0x0000BFEE //A9 = -7.7505086843257228386931766018e-06
data8 0x96D9997CF326A36D, 0x00003FEE //A8 = 8.9913605625817479172071008270e-06
data8 0x97057D85DCB0ED99, 0x00003FF2 //A7 = 1.4402527482741758767786898553e-04
data8 0xDC23BCB3599C0490, 0x0000BFF3 //A6 = -4.1988296144950673955519083419e-04
data8 0xDA150C4867208A81, 0x0000BFF5 //A5 = -1.6638352864915033417887831090e-03
data8 0x9A4DAF550A2CC29A, 0x00003FF8 //A4 = 9.4179355839141698591817907680e-03
LOCAL_OBJECT_END(_0p5_to_1_data_tail)

LOCAL_OBJECT_START(_1_to_2_data_tail)
// Polynomial coefficients for the erf(x), 1 <= |x| < 2.0 
data8 0x969EAC5C7B46CAB9, 0x00003FEF //A13 = 1.7955281439310148162059582795e-05
data8 0xA2ED832912E9FCD9, 0x00003FF1 //A12 = 7.7690020847111408916570845775e-05
data8 0x85677C39C48E43E7, 0x0000BFF3 //A11 = -2.5444839340796031538582511806e-04
data8 0xC2DAFA91683DAAE4, 0x0000BFF1 //A10 = -9.2914288456063075386925076097e-05
data8 0xE01C061CBC6A2825, 0x00003FF5 //A9 = 1.7098195515864039518892834211e-03
data8 0x9AD7271CAFD01C78, 0x0000BFF6 //A8 = -2.3626776207372761518718893636e-03
data8 0x9B6B9D30EDD5F4FF, 0x0000BFF7 //A7 = -4.7430532011804570628999212874e-03
data8 0x9E51EB9623F1D446, 0x00003FF9 //A6 = 1.9326171998839772791190405201e-02
data8 0xF391B935C12546DE, 0x0000BFF8 //A5 = -1.4866286152953671441682166195e-02
data8 0xB6AD4AE850DBF526, 0x0000BFFA //A4 = -4.4598858458861014323191919669e-02
LOCAL_OBJECT_END(_1_to_2_data_tail)

LOCAL_OBJECT_START(_2_to_3p25_data_tail)
// Polynomial coefficients for the erf(x), 2 <= |x| < 3.25 
data8 0x847C24DAC7C7558B, 0x00003FF5 //A13 = 1.0107798565424606512130100541e-03
data8 0xCB6340EAF02C3DF8, 0x00003FF8 //A12 = 1.2413800617425931997420375435e-02
data8 0xB5163D252DBBC107, 0x0000BFF9 //A11 = -2.2105330871844825370020459523e-02
data8 0x82FF9C0B68E331E4, 0x00003FF9 //A10 = 1.5991024756001692140897408128e-02
data8 0xE9519E4A49752E04, 0x00003FF7 //A9 = 7.1203253651891723548763348088e-03
data8 0x8D52F11B7AE846D9, 0x0000BFFA //A8 = -3.4502927613795425888684181521e-02
data8 0xCCC5A3E32BC6FA30, 0x00003FFA //A7 = 4.9993171868423886228679106871e-02
data8 0xC1791AD8284A1919, 0x0000BFFA //A6 = -4.7234635220336795411997070641e-02
data8 0x853DAAA35A8A3C18, 0x00003FFA //A5 = 3.2529512934760303976755163452e-02
data8 0x88E42D8F47FAB60E, 0x0000BFF9 //A4 = -1.6710366233609742619461063050e-02
LOCAL_OBJECT_END(_2_to_3p25_data_tail)

LOCAL_OBJECT_START(_4_to_6p53_data_tail)
// Polynomial coefficients for the erf(x), 4 <= |x| < 6.53 
data8 0xD8235ABF08B8A6D1, 0x00003FEE //A13 = 1.2882834877224764938429832586e-05
data8 0xAEDF44F9C77844C2, 0x0000BFEC //A12 = -2.6057980393716019511497492890e-06
data8 0xCCD5490956A4FCFD, 0x00003FEA //A11 = 7.6306293047300300284923464089e-07
data8 0xF71AF0126EE26AEA, 0x0000BFE8 //A10 = -2.3013467500738417953513680935e-07
data8 0xE4CE68089858AC20, 0x00003FE6 //A9 = 5.3273112263151109935867439775e-08
data8 0xBD15106FBBAEE593, 0x0000BFE4 //A8 = -1.1006037358336556244645388790e-08
data8 0x8BBF9A5769B6E480, 0x00003FE2 //A7 = 2.0336075804332107927300019116e-09
data8 0xB049D845D105E302, 0x0000BFDF //A6 = -3.2066683399502826067820249320e-10
data8 0xBAC69B3F0DFE5483, 0x00003FDC //A5 = 4.2467901578369360007795282687e-11
data8 0xA29C398F83F8A0D1, 0x0000BFD9 //A4 = -4.6216613698438694005327544047e-12
LOCAL_OBJECT_END(_4_to_6p53_data_tail)

LOCAL_OBJECT_START(_3p25_to_4_data_tail)
// Polynomial coefficients for the erf(x), 3.25 <= |x| < 4 
data8 0x95BE1BEAD738160F, 0x00003FF2 //A13 = 1.4280568455209843005829620687e-04
data8 0x8108C8FFAC0F0B21, 0x0000BFF4 //A12 = -4.9222685622046459346377033307e-04
data8 0xD72A7FAEE7832BBE, 0x00003FF4 //A11 = 8.2079319302109644436194651098e-04
data8 0x823AB4281CA7BBE7, 0x0000BFF5 //A10 = -9.9357079675971109178261577703e-04
data8 0xFA1232D476048D11, 0x00003FF4 //A9 = 9.5394549599882496825916138915e-04
data8 0xC463D7AF88025FB2, 0x0000BFF4 //A8 = -7.4916843357898101689031755368e-04
data8 0xFEBE32B6B379D072, 0x00003FF3 //A7 = 4.8588363901002111193445057206e-04
data8 0x882829BB68409BF3, 0x0000BFF3 //A6 = -2.5969865184916169002074135516e-04
data8 0xED2F886E29DAAB09, 0x00003FF1 //A5 = 1.1309894347742479284610149994e-04
data8 0xA4C07129436555B2, 0x0000BFF0 //A4 = -3.9279872584973887163830479579e-05
LOCAL_OBJECT_END(_3p25_to_4_data_tail)


LOCAL_OBJECT_START(_0_to_1o8_data)
// Polynomial coefficients for the erf(x), 0.0 <= |x| < 0.125 
data8 0x3FF20DD750429B6D, 0x3C71AE3A8DDFFEDE //A1H, A1L
data8 0xF8B0DACE42525CC2, 0x0000BFEE //A15
data8 0xFCD02E1BF0EC2C37, 0x00003FF1 //A13
data8 0xE016D968FE473B5E, 0x0000BFF4 //A11
data8 0xAB2DE68711BF5A79, 0x00003FF7 //A9
data8 0xDC16718944518309, 0x0000BFF9 //A7
data8 0xE71790D0215F0C8F, 0x00003FFB //A5
data8 0xC093A3581BCF3612, 0x0000BFFD //A3
LOCAL_OBJECT_END(_0_to_1o8_data)


LOCAL_OBJECT_START(_denorm_data)
data8 0x3FF20DD750429B6D //A1H = 1.1283791670955125585606992900e+00
data8 0x3C71AE3A914FED80 //A1L = 1.5335459613165880745599768129e-17
LOCAL_OBJECT_END(_denorm_data)


.section .text
GLOBAL_LIBM_ENTRY(erfl)

{ .mfi
      alloc          r32         = ar.pfs, 0, 21, 0, 0 
      fmerge.se      fArgAbsNorm = f1, f8      // normalized x (1.0 <= x < 2.0)
      addl           rSignBit    = 0x20000, r0 // Set sign bit for exponent
}
{ .mlx
      addl           rDataPtr    = @ltoff(erfl_data), gp // Get common data ptr
      movl           r1p5        = 0x3FF8000000000000    // 1.5 in dbl repres.
};;

{ .mfi
      getf.exp       rArgExp     = f8              // Get arg exponent
      fclass.m       p6,p0       = f8, 0xEF // Filter 0, denormals and specials 
                            // 0xEF = @qnan|@snan|@pos|@neg|@zero|@unorm|@inf
      addl           rBias       = 0xfffc, r0 // Value to subtract from exp 
                                              // to get actual interval number
}
{ .mfi
      ld8            rDataPtr    = [rDataPtr]  // Get real common data pointer
      fma.s1         fArgSqr     = f8, f8, f0  // x^2 (for [0;1/8] path)
      addl           r2to4       = 0x10000, r0 // unbiased exponent 
                                               // for [2;4] binary interval
};;

{ .mfi
      getf.sig       rArgSig     = f8              // Get arg significand 
      fcmp.lt.s1     p15, p14    = f8, f0          // Is arg negative/positive?
      addl           rSaturation = 0xd0e, r0       // First 12 bits of
                                                   // saturation value signif.
}
{ .mfi
      setf.d         f1p5        = r1p5            // 1.5 construction 
      fma.s1         f2p0        = f1,f1,f1        // 2.0 construction
      addl           r3p25Sign   = 0xd00, r0       // First 12 bits of
                                                   // 3.25 value signif.
};;

{ .mfi
      addl           rTailDataPtr = 0x700, rDataPtr  // Pointer to "tail" data
      nop.f          0
      andcm          rArgExp     = rArgExp, rSignBit // Remove sign of exp
}
{ .mfb
      addl           rTiny       = 0xf000, r0 // Tiny value for saturation path
      nop.f          0
(p6)  br.cond.spnt   erfl_spec              // Branch to zero, denorm & specs
};;

{ .mfi
      sub            rInterval   = rArgExp, rBias // Get actual interval number
      nop.f          0
      shr.u          rArgSig     = rArgSig, 52    // Leave only 12 bits of sign. 
}
{ .mfi
      adds           rShiftedDataPtr = 0x10, rDataPtr // Second ptr to data
      nop.f          0
      cmp.eq         p8, p10     = r2to4, rArgExp // If exp is in 2to4 interval?
};;

{ .mfi
(p8)  cmp.le         p8, p10     = r3p25Sign, rArgSig // If sign. is greater 
                            //  than 1.25? (means arg is in [3.25;4] interval)
      nop.f          0
      shl            rOffset     = rInterval, 8 // Make offset from 
                                                // interval number
}
{ .mfi
      cmp.gt         p9, p0      = 0x0, rInterval // If interval is less than 0
                                                  // (means arg is in [0; 1/8])
      nop.f          0
      cmp.eq         p7, p0      = 0x5, rInterval // If arg is in [4:8] interv.?
};;

{ .mfi
(p8)  adds           rOffset     = 0x200, rOffset // Add additional offset 
                                 // if arg is in [3.25;4] (another data set)
      fma.s1         fArgCube    = fArgSqr, f8, f0  // x^3 (for [0;1/8] path)
      shl            rTailOffset = rInterval, 7  // Make offset to "tail" data
                                                 // from interval number
}
{ .mib
      setf.exp       fTiny       = rTiny // Construct "tiny" value 
                                         // for saturation path
      cmp.ltu        p11, p0     = 0x5, rInterval // if arg > 8
(p9)  br.cond.spnt   _0_to_1o8       
};;

{ .mfi
      add            rAddr1      = rDataPtr, rOffset // Get address for 
                                                     // interval data 
      nop.f          0
      shl            rTailAddOffset = rInterval, 5 // Offset to interval
                                                   // "tail" data 
}
{ .mib
      add            rAddr2      = rShiftedDataPtr, rOffset // Get second
                                                 // address for interval data 
(p7)  cmp.leu        p11, p0     = rSaturation, rArgSig // if arg is 
                                                        // in [6.53;8] interval
(p11) br.cond.spnt   _saturation // Branch to Saturation path
};;

{ .mmi
      ldfe           fA3         = [rAddr1], 0x90 // Load A3
      ldfpd          fA2H, fA2L  = [rAddr2], 16 // Load A2High, A2Low
      add            rTailOffset = rTailOffset, rTailAddOffset // "Tail" offset
};;

{ .mmi
      ldfe           fA20        = [rAddr1], 16 // Load A20
      ldfpd          fA1H, fA1L  = [rAddr2], 16 // Load A1High, A1Low
(p8)  adds           rTailOffset = 0x140, rTailOffset // Additional offset
                                                      //  for [3.24;4] interval
};;

{ .mmi
      ldfe           fA19        = [rAddr1], 16 // Load A19
      ldfpd          fA0H, fA0L  = [rAddr2], 16 // Load A0High, A0Low
      add            rTailAddr1  = rTailDataPtr, rTailOffset // First tail
                                                             // data address
};;

.pred.rel "mutex",p8,p10
{ .mfi
      ldfe           fA18        = [rAddr1], 16 // Load A18
(p8)  fms.s1         fArgAbsNorm = fArgAbsNorm, f1, f2p0 // Add 2.0 
                          // to normalized arg (for [3.24;4] interval)
      adds           rTailAddr2  = 0x10, rTailAddr1  // First tail
                                                     // data address
}
{ .mfi
      ldfe           fA25        = [rAddr2], 16 // Load A25 
(p10) fms.s1         fArgAbsNorm = fArgAbsNorm, f1, f1p5  // Add 1.5 
                                                // to normalized arg
      nop.i          0
};;

{ .mmi
      ldfe           fA17        = [rAddr1], 16 // Load A17
      ldfe           fA24        = [rAddr2], 16 // Load A24
      nop.i          0
};;

{ .mmi
      ldfe           fA16        = [rAddr1], 16 // Load A16
      ldfe           fA23        = [rAddr2], 16 // Load A23
      nop.i          0
};;

{ .mmi
      ldfe           fA15        = [rAddr1], 16 // Load A15
      ldfe           fA22        = [rAddr2], 16 // Load A22
      nop.i          0
};;

{ .mmi
      ldfe           fA14        = [rAddr1], 16 // Load A14
      ldfe           fA21        = [rAddr2], 16 // Load A21
      nop.i          0
};;

{ .mfi
      ldfe           fA13        = [rTailAddr1], 32              // Load A13
      fms.s1         fArgAbsNorm2 = fArgAbsNorm, fArgAbsNorm, f0 // x^2
      nop.i          0
}
{ .mfi
      ldfe           fA12        = [rTailAddr2], 32 // Load A12
      nop.f          0
      nop.i          0
};;

{ .mfi
      ldfe           fA11        = [rTailAddr1], 32       // Load A11
      fma.s1         fRes3H      = fA3, fArgAbsNorm, fA2H // (A3*x+A2)*x^2
      nop.i          0
}
{ .mfi
      ldfe           fA10        = [rTailAddr2], 32     // Load A10
      fma.s1         fTH         = fA3, fArgAbsNorm, f0 // (A3*x+A2)*x^2
      nop.i          0
};;

{ .mfi
      ldfe           fA9         = [rTailAddr1], 32 // Load A9
      fma.s1         fTT2        = fA1L, fArgAbsNorm, f0 // A1*x+A0
      nop.i          0
}
{ .mfi
      ldfe           fA8         = [rTailAddr2], 32 // Load A8
      nop.f          0
      nop.i          0
};;

{ .mmi
      ldfe           fA7         = [rTailAddr1], 32 // Load A7
      ldfe           fA6         = [rTailAddr2], 32 // Load A6
      nop.i          0
};;

{ .mmi
      ldfe           fA5         = [rTailAddr1], 32 // Load A5
      ldfe           fA4         = [rTailAddr2], 32 // Load A4
      nop.i          0
};;

{ .mfi
      nop.m          0
      fms.s1         fArgAbsNorm2L = fArgAbsNorm, fArgAbsNorm, fArgAbsNorm2
                                                    // Low part of x^2 (delta)
      nop.i          0
}
{ .mfi
      nop.m          0
      fms.s1         fArgAbsNorm4  = fArgAbsNorm2, fArgAbsNorm2, f0 // x^4
      nop.i          0
};;

{ .mfi
      nop.m          0
      fms.s1         fRes3L      = fA2H, f1, fRes3H // // (A3*x+A2)*x^2
      nop.i          0
};;

{ .mfi
      nop.m          0
      fms.s1         fArgAbsNorm3 = fArgAbsNorm2, fArgAbsNorm, f0 // x^3
      nop.i          0
}
{ .mfi
      nop.m          0
      fma.s1         fTH2        = fA1H, fArgAbsNorm, fTT2 // A1*x+A0
      nop.i          0
};;

{ .mfi
      nop.m          0
      fma.s1         fA23        = fA24,  fArgAbsNorm, fA23 // Polynomial tail
      nop.i          0
}
{ .mfi 
      nop.m          0
      fma.s1         fA21        = fA22,  fArgAbsNorm, fA21 // Polynomial tail 
      nop.i          0
};;

{ .mfi
      nop.m          0
      fma.s1         fA12        = fA13,  fArgAbsNorm, fA12 // Polynomial tail
      nop.i          0
}
;;

{ .mfi
      nop.m          0
      fma.s1         fRes3L      = fRes3L, f1, fTH // (A3*x+A2)*x^2
      nop.i          0
}
{ .mfi 
      nop.m          0
      fma.s1         fA19        = fA20,  fArgAbsNorm, fA19 // Polynomial tail
      nop.i          0
};;

{ .mfi
      nop.m          0
      fma.s1         fRes1H      = fTH2, f1, fA0H // A1*x+A0
      nop.i          0
}
{ .mfi 
      nop.m          0
      fms.s1         fTL2        = fA1H, fArgAbsNorm, fTH2 // A1*x+A0
      nop.i          0
};;

{ .mfi
      nop.m          0
      fma.s1         fA8         = fA9,  fArgAbsNorm, fA8 // Polynomial tail
      nop.i          0
}
{ .mfi 
      nop.m          0
      fma.s1         fA10        = fA11,  fArgAbsNorm, fA10 // Polynomial tail
      nop.i          0
};;
{ .mfi
      nop.m          0
      fma.s1         fA15        = fA16,  fArgAbsNorm, fA15 // Polynomial tail
      nop.i          0
}
{ .mfi
      nop.m          0
      fma.s1         fA17        = fA18,  fArgAbsNorm, fA17 // Polynomial tail
      nop.i          0
};;
{ .mfi
      nop.m          0
      fms.s1         fArgAbsNorm11 = fArgAbsNorm4, fArgAbsNorm4, f0 // x^8
      nop.i          0
}
{ .mfi 
      nop.m          0
      fma.s1         fA4         = fA5,  fArgAbsNorm, fA4 // Polynomial tail
      nop.i          0
};;

{ .mfi
      nop.m          0
      fma.s1         fRes3L      = fRes3L, f1, fA2L // (A3*x+A2)*x^2
      nop.i          0
}
{ .mfi 
      nop.m          0
      fma.s1         fA6         = fA7,  fArgAbsNorm, fA6 // Polynomial tail
      nop.i          0
};;

{ .mfi
      nop.m          0
      fma.s1         fTL2        = fTL2, f1, fTT2 // A1*x+A0
      nop.i          0
}
{ .mfi 
      nop.m          0
      fms.s1         fRes1L      = fA0H, f1, fRes1H // A1*x+A0
      nop.i          0
};;

{ .mfi
      nop.m          0
      fma.s1         fA23        = fA25,  fArgAbsNorm2, fA23 // Polynomial tail
      nop.i          0
}
{ .mfi 
      nop.m          0
      fma.s1         fA12        = fA14,  fArgAbsNorm2, fA12 // Polynomial tail
      nop.i          0
};;

{ .mfi
      nop.m          0
      fma.s1         fA19        = fA21,  fArgAbsNorm2, fA19  // Polynomial tail
      nop.i          0
}
{ .mfi 
      nop.m          0
      fma.s1         fA8         = fA10,  fArgAbsNorm2, fA8 // Polynomial tail
      nop.i          0
};;

{ .mfi
      nop.m          0
      fma.s1         fA15        = fA17,  fArgAbsNorm2, fA15 // Polynomial tail
      nop.i          0
}
{ .mfi 
      nop.m          0
      fms.s1         fArgAbsNorm11 = fArgAbsNorm11, fArgAbsNorm3, f0 // x^11
      nop.i          0
};;

{ .mfi
      nop.m          0
      fma.s1         fTT         = fRes3L, fArgAbsNorm2, f0 // (A3*x+A2)*x^2
      nop.i          0
}
{ .mfi 
      nop.m          0
      fma.s1         fA4         = fA6,  fArgAbsNorm2, fA4 // Polynomial tail
      nop.i          0
};;

{ .mfi
      nop.m          0
      fma.s1         fRes1L      = fRes1L, f1, fTH2 // A1*x+A0
      nop.i          0
};;

{ .mfi
      nop.m          0
      fma.s1         fA19        = fA23,  fArgAbsNorm4, fA19 // Polynomial tail
      nop.i          0
}
{ .mfi 
      nop.m          0
      fma.s1         fA8         = fA12,  fArgAbsNorm4, fA8 // Polynomial tail
      nop.i          0
};;

{ .mfi
      nop.m          0
      fma.s1         fTT         = fRes3H, fArgAbsNorm2L, fTT // (A3*x+A2)*x^2
      nop.i          0
};;

{ .mfi
      nop.m          0
      fma.s1         fRes1L      = fRes1L, f1, fTL2 // A1*x+A0
      nop.i          0
};;

{ .mfi
      nop.m          0
      fma.s1         fA15        = fA19,  fArgAbsNorm4, fA15 // Polynomial tail
      nop.i          0
}
{ .mfi
      nop.m          0
      fma.s1         fA4         = fA8,  fArgAbsNorm4, fA4 // Polynomial tail
      nop.i          0
};;

{ .mfi
      nop.m          0
      fma.s1         fRes2H      = fRes3H, fArgAbsNorm2, fTT // (A3*x+A2)*x^2
      nop.i          0
};;

{ .mfi
      nop.m          0
      fma.s1         fRes1L      = fRes1L, f1, fA0L // A1*x+A0
      nop.i          0
};;

{ .mfi
      nop.m          0
      fma.s1         fRes4       = fA15, fArgAbsNorm11, fA4 // Result of 
                                                      // polynomial tail
      nop.i          0
};;

{ .mfi
      nop.m          0
      fms.s1         fRes2L      = fRes3H, fArgAbsNorm2, fRes2H // (A3*x+A2)*x^2
      nop.i          0
}
{ .mfi 
      nop.m          0
      fma.s1         fResH       = fRes2H, f1, fRes1H // High result
      nop.i          0
};;

{ .mfi
      nop.m          0
      fma.s1         fRes1L      = fRes4, fArgAbsNorm4, fRes1L // A1*x+A0
      nop.i          0
};;

{ .mfi 
      nop.m          0
      fma.s1         fRes2L      = fRes2L, f1, fTT // (A3*x+A2)*x^2
      nop.i          0
}
{ .mfi 
      nop.m          0
      fms.s1         fResL       = fRes1H, f1, fResH // Low result
      nop.i          0
};;

{ .mfi
      nop.m          0
      fma.s1         fRes1L      = fRes1L, f1, fRes2L // Low result
      nop.i          0
}
{ .mfi 
      nop.m          0
      fma.s1         fResL       = fResL, f1, fRes2H // Low result
      nop.i          0
};;

{ .mfi 
      nop.m          0
(p15) fneg           fResH       = fResH // Invert high result if arg is neg.
      nop.i          0
};;

{ .mfi
      nop.m          0
      fma.s1         fResL       = fResL, f1, fRes1L // Low result
      nop.i          0
};;

.pred.rel "mutex",p14,p15
{ .mfi 
      nop.m          0
(p14) fma.s0         f8          = fResH, f1, fResL // Add high and low results
      nop.i          0
}
{ .mfb 
      nop.m          0
(p15) fms.s0         f8          = fResH, f1, fResL // Add high and low results
      br.ret.sptk    b0          // Main path return
};;

//  satiration path ////////////////////////////////////////////////////////////
_saturation:

.pred.rel "mutex",p14,p15
{ .mfi 
      nop.m          0
(p14) fms.s0            f8          = f1, f1, fTiny // Saturation result r = 1-tiny
      nop.i 0
};;
{ .mfb 
      nop.m          0
(p15) fnma.s0           f8          = f1, f1, fTiny // Saturation result r = tiny-1
      br.ret.sptk    b0         // Saturation path return
};;


//  0, denormals and special IEEE numbers path /////////////////////////////////
erfl_spec:

{ .mfi 
      addl           rDataPtr    = 0xBE0, rDataPtr // Ptr to denormals coeffs
      fclass.m       p6,p0       = f8, 0x23 // To filter infinities
                                          // 0x23 = @pos|@neg|@inf 
      nop.i          0
};;

{ .mfi 
      ldfpd          fA1H, fA1L  = [rDataPtr] // Load denormals coeffs A1H, A1L
      fclass.m       p7,p0       = f8, 0xC7 // To filter NaNs & Zeros
                                 // 0xC7 = @pos|@neg|@zero|@qnan|@snan
      nop.i          0
};;

{ .mfb 
      nop.m          0
(p6)  fmerge.s       f8          = f8, f1     // +/-1 for INF args 
(p6)  br.ret.spnt    b0                       // exit for x = INF
};;

{ .mfb 
      nop.m          0
(p7)  fma.s0         f8          = f8, f1, f8    // +/-0 for 0 args 
                                                 // and NaNs for NaNs
(p7)  br.ret.spnt    b0                          // exit for x = NaN or +/-0
};;

{ .mfi 
      nop.m          0
      fnorm.s0       f8          = f8            // Normalize arg
      nop.i          0
};;

{ .mfi 
      nop.m          0
      fms.s1         fRes1H      = f8, fA1H, f0   // HighRes
      nop.i          0
}
{ .mfi 
      nop.m          0
      fms.s1         fRes1L      = f8, fA1L, f0   // LowRes
      nop.i          0
};;

{ .mfi 
      nop.m          0
      fms.s1         fRes1Hd     = f8, fA1H, fRes1H // HighRes delta
      nop.i          0
};;

{ .mfi 
      nop.m          0
      fma.s1         fRes        = fRes1L, f1,  fRes1Hd // LowRes+HighRes delta
      nop.i          0
};;

{ .mfi 
      nop.m          0
      fma.s1         fRes        = f8, f8, fRes // r=x^2+r
      nop.i          0
};;

{ .mfb 
      nop.m          0
      fma.s0         f8          = fRes, f1, fRes1H  // res = r+ResHigh
      br.ret.sptk    b0          // 0, denormals, specials return
};;


//  0 < |x| < 1/8 path /////////////////////////////////////////////////////////
_0_to_1o8:

{ .mmi 
      adds           rAddr1      = 0xB60, rDataPtr // Ptr 1 to coeffs
      adds           rAddr2      = 0xB80, rDataPtr // Ptr 2 to coeffs
      nop.i          0
};;

{ .mmi 
      ldfpd          fA1H, fA1L  = [rAddr1], 16 // Load A1High, A1Low
      ldfe           fA13        = [rAddr2], 16 // Load A13
      nop.i          0
};;

{ .mmi 
      ldfe           fA15        = [rAddr1], 48 // Load A15
      ldfe           fA11        = [rAddr2], 32 // Load A11
      nop.i          0
};;

{ .mmi 
      ldfe           fA9         = [rAddr1], 32 // Load A9
      ldfe           fA7         = [rAddr2], 32 // Load A7
      nop.i          0
};;

{ .mmi 
      ldfe           fA5         = [rAddr1]  // Load A5
      ldfe           fA3         = [rAddr2] // Load A3
      nop.i          0
};;

{ .mfi 
      nop.m          0
      fms.s1         fRes1H      = f8, fA1H, f0 // x*(A1H+A1L)
      nop.i          0
}
{ .mfi 
      nop.m          0
      fms.s1         fRes1L      = f8, fA1L, f0 // x*(A1H+A1L)
      nop.i          0
};;

{ .mfi 
      nop.m          0
      fma.s1         fA11        = fA13, fArgSqr, fA11 // Polynomial tail
      nop.i          0
}
{ .mfi 
      nop.m          0
      fma.s1         fArgFour    = fArgSqr, fArgSqr, f0 // a^4        
      nop.i          0
};;


{ .mfi 
      nop.m          0
      fma.s1         fA3         = fA5, fArgSqr, fA3 // Polynomial tail
      nop.i          0
}
{ .mfi 
      nop.m          0
      fma.s1         fA7         = fA9, fArgSqr, fA7 // Polynomial tail
      nop.i          0
};;


{ .mfi 
      nop.m          0
      fms.s1         fRes1Hd     = f8, fA1H, fRes1H // x*(A1H+A1L) delta
      nop.i          0
};;

{ .mfi 
      nop.m          0
      fma.s1         fA11        = fA15, fArgFour, fA11 // Polynomial tail
      nop.i          0
};;

{ .mfi 
      nop.m          0
      fma.s1         fA3         = fA7, fArgFour, fA3 // Polynomial tail
      nop.i          0
}
{ .mfi 
      nop.m          0
      fma.s1         fArgEight   = fArgFour, fArgFour, f0 // a^8
      nop.i          0
};;

{ .mfi 
      nop.m          0
      fma.s1         f8          = fRes1L, f1,  fRes1Hd // x*(A1H+A1L)
      nop.i          0
};;

{ .mfi 
      nop.m          0
      fma.s1         fRes        = fA11, fArgEight, fA3 //Polynomial tail result
      nop.i          0
};;

{ .mfi 
      nop.m          0
      fma.s1         f8          = fRes, fArgCube, f8 // (Polynomial tail)*x^3
      nop.i          0
};;

{ .mfb 
      nop.m          0
      fma.s0         f8          = f8, f1, fRes1H  // (Polynomial tail)*x^3 + 
                                                   // + x*(A1H+A1L)
      br.ret.sptk    b0          // [0;1/8] interval return
};;

    
GLOBAL_LIBM_END(erfl)