1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
|
.file "erfcf.s"
// Copyright (c) 2002 - 2003, Intel Corporation
// All rights reserved.
//
// Contributed 2002 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History
//==============================================================
// 01/17/02 Initial version
// 05/20/02 Cleaned up namespace and sf0 syntax
// 02/06/03 Reordered header: .section, .global, .proc, .align
//
// API
//==============================================================
// float erfcf(float)
//
// Overview of operation
//==============================================================
// 1. 0 <= x <= 10.06
//
// erfcf(x) = P15(x) * exp( -x^2 )
//
// Comment:
//
// Let x(0)=0, x(i) = 2^(i), i=1,...3, x(4)= 10.06
//
// Let x(i)<= x < x(i+1).
// We can find i as exponent of argument x (let i = 0 for 0<= x < 2 )
//
// Let P15(x) - polynomial approximation of degree 15 for function
// erfcf(x) * exp( x^2) and x(i) <= x <= x(i+1), i = 0,1,2,3
// Polynomial coeffitients we have in the table erfc_p_table.
//
// So we can find result for erfcf(x) as above.
// Algorithm description for exp function see below.
//
// 2. -4.4 <= x < 0
//
// erfcf(x) = 2.0 - erfcf(-x)
//
// 3. x > 10.06
//
// erfcf(x) ~=~ 0.0
//
// 4. x < -4.4
//
// erfcf(x) ~=~ 2.0
// Special values
//==============================================================
// erfcf(+0) = 1.0
// erfcf(-0) = 1.0
// erfcf(+qnan) = +qnan
// erfcf(-qnan) = -qnan
// erfcf(+snan) = +qnan
// erfcf(-snan) = -qnan
// erfcf(-inf) = 2.0
// erfcf(+inf) = +0
//==============================================================
// Take double exp(double) from libm_64.
//
// Overview of operation
//==============================================================
// Take the input x. w is "how many log2/128 in x?"
// w = x * 128/log2
// n = int(w)
// x = n log2/128 + r + delta
// n = 128M + index_1 + 2^4 index_2
// x = M log2 + (log2/128) index_1 + (log2/8) index_2 + r + delta
// exp(x) = 2^M 2^(index_1/128) 2^(index_2/8) exp(r) exp(delta)
// Construct 2^M
// Get 2^(index_1/128) from table_1;
// Get 2^(index_2/8) from table_2;
// Calculate exp(r) by series
// r = x - n (log2/128)_high
// delta = - n (log2/128)_low
// Calculate exp(delta) as 1 + delta
//
// Comment for erfcf:
//
// Let exp(r) = 1 + x + 0.5*x^2 + (1/6)*x^3
// Let delta = 0.
//==============================================================
//
// Registers used
//==============================================================
// Floating Point registers used:
// f8, input
// f6,f7,f9 -> f11, f32 -> f92
// General registers used:
// r14 -> r22,r32 -> r50
// Predicate registers used:
// p6 -> p15
// Assembly macros
//==============================================================
EXP_AD_TB1 = r14
exp_GR_sig_inv_ln2 = r15
exp_TB1_size = r16
exp_GR_rshf_2to56 = r17
exp_GR_exp_2tom56 = r18
exp_GR_rshf = r33
EXP_AD_TB2 = r34
EXP_AD_P = r35
exp_GR_N = r36
exp_GR_index_1 = r37
exp_GR_index_2_16 = r38
exp_GR_biased_M = r39
EXP_AD_T1 = r40
EXP_AD_T2 = r41
exp_TB2_size = r42
// GR for erfcf(x)
//==============================================================
GR_IndxPlusBias = r19
GR_ExpMask = r20
GR_BIAS = r21
GR_ShftPi_bias = r22
GR_P_POINT_1 = r43
GR_P_POINT_2 = r44
GR_P_POINT_3 = r45
GR_P_POINT_4 = r46
GR_ShftPi = r47
GR_EpsNorm = r48
GR_05 = r49
GR_1_by_6 = r50
// GR for __libm_support call
//==============================================================
GR_SAVE_B0 = r43
GR_SAVE_PFS = r44
GR_SAVE_GP = r45
GR_SAVE_SP = r46
GR_Parameter_X = r47
GR_Parameter_Y = r48
GR_Parameter_RESULT = r49
GR_Parameter_TAG = r50
// FR for exp(-x^2)
//==============================================================
FR_X = f10
FR_Y = f1
FR_RESULT = f8
EXP_2TOM56 = f6
EXP_INV_LN2_2TO63 = f7
EXP_W_2TO56_RSH = f9
exp_ln2_by_128_hi = f11
EXP_RSHF_2TO56 = f32
exp_ln2_by_128_lo = f33
EXP_RSHF = f34
EXP_Nfloat = f35
exp_r = f36
exp_rsq = f37
EXP_2M = f38
exp_S1 = f39
exp_T1 = f40
exp_P = f41
exp_S = f42
EXP_NORM_f8 = f43
exp_S2 = f44
exp_T2 = f45
// FR for erfcf(x)
//==============================================================
FR_AbsArg = f46
FR_Tmp = f47
FR_Tmp1 = f48
FR_Tmpf = f49
FR_NormX = f50
FR_A15 = f51
FR_A14 = f52
FR_A13 = f53
FR_A12 = f54
FR_A11 = f55
FR_A10 = f56
FR_A9 = f57
FR_A8 = f58
FR_A7 = f59
FR_A6 = f60
FR_A5 = f61
FR_A4 = f62
FR_A3 = f63
FR_A2 = f64
FR_A1 = f65
FR_A0 = f66
FR_P15_0_1 = f67
FR_P15_1_1 = f68
FR_P15_1_2 = f69
FR_P15_2_1 = f70
FR_P15_2_2 = f71
FR_P15_3_1 = f72
FR_P15_3_2 = f73
FR_P15_4_1 = f74
FR_P15_4_2 = f75
FR_P15_7_1 = f76
FR_P15_7_2 = f77
FR_P15_8_1 = f78
FR_P15_9_1 = f79
FR_P15_9_2 = f80
FR_P15_13_1 = f81
FR_P15_14_1 = f82
FR_P15_14_2 = f83
FR_2 = f84
FR_05 = f85
FR_1_by_6 = f86
FR_Pol = f87
FR_Exp = f88
FR_POS_ARG_ASYMP = f89
FR_NEG_ARG_ASYMP = f90
FR_UnfBound = f91
FR_EpsNorm = f92
// Data tables
//==============================================================
RODATA
.align 16
// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
// double-extended 1/ln(2)
// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
// 3fff b8aa 3b29 5c17 f0bc
// For speed the significand will be loaded directly with a movl and setf.sig
// and the exponent will be bias+63 instead of bias+0. Thus subsequent
// computations need to scale appropriately.
// The constant 128/ln(2) is needed for the computation of w. This is also
// obtained by scaling the computations.
//
// Two shifting constants are loaded directly with movl and setf.d.
// 1. EXP_RSHF_2TO56 = 1.1000..00 * 2^(63-7)
// This constant is added to x*1/ln2 to shift the integer part of
// x*128/ln2 into the rightmost bits of the significand.
// The result of this fma is EXP_W_2TO56_RSH.
// 2. EXP_RSHF = 1.1000..00 * 2^(63)
// This constant is subtracted from EXP_W_2TO56_RSH * 2^(-56) to give
// the integer part of w, n, as a floating-point number.
// The result of this fms is EXP_Nfloat.
LOCAL_OBJECT_START(exp_table_1)
data4 0x4120f5c3, 0x408ccccd //POS_ARG_ASYMP = 10.06, NEG_ARG_ASYMP = 4.4
data4 0x41131Cdf, 0x00800000 //UnfBound ~=~ 9.1, EpsNorm ~=~ 1.1754944e-38
//
data8 0xb17217f7d1cf79ab , 0x00003ff7 // ln2/128 hi
data8 0xc9e3b39803f2f6af , 0x00003fb7 // ln2/128 lo
//
// Table 1 is 2^(index_1/128) where
// index_1 goes from 0 to 15
//
data8 0x8000000000000000 , 0x00003FFF
data8 0x80B1ED4FD999AB6C , 0x00003FFF
data8 0x8164D1F3BC030773 , 0x00003FFF
data8 0x8218AF4373FC25EC , 0x00003FFF
data8 0x82CD8698AC2BA1D7 , 0x00003FFF
data8 0x8383594EEFB6EE37 , 0x00003FFF
data8 0x843A28C3ACDE4046 , 0x00003FFF
data8 0x84F1F656379C1A29 , 0x00003FFF
data8 0x85AAC367CC487B15 , 0x00003FFF
data8 0x8664915B923FBA04 , 0x00003FFF
data8 0x871F61969E8D1010 , 0x00003FFF
data8 0x87DB357FF698D792 , 0x00003FFF
data8 0x88980E8092DA8527 , 0x00003FFF
data8 0x8955EE03618E5FDD , 0x00003FFF
data8 0x8A14D575496EFD9A , 0x00003FFF
data8 0x8AD4C6452C728924 , 0x00003FFF
LOCAL_OBJECT_END(exp_table_1)
// Table 2 is 2^(index_1/8) where
// index_2 goes from 0 to 7
LOCAL_OBJECT_START(exp_table_2)
data8 0x8000000000000000 , 0x00003FFF
data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
data8 0x9837F0518DB8A96F , 0x00003FFF
data8 0xA5FED6A9B15138EA , 0x00003FFF
data8 0xB504F333F9DE6484 , 0x00003FFF
data8 0xC5672A115506DADD , 0x00003FFF
data8 0xD744FCCAD69D6AF4 , 0x00003FFF
data8 0xEAC0C6E7DD24392F , 0x00003FFF
LOCAL_OBJECT_END(exp_table_2)
LOCAL_OBJECT_START(erfc_p_table)
// Pol_0
data8 0xBEA3260C63CB0446 //A15 = -5.70673541831883454676e-07
data8 0x3EE63D6178077654 //A14 = +1.06047480138940182343e-05
data8 0xBF18646BC5FC70A7 //A13 = -9.30491237309283694347e-05
data8 0x3F40F92F909117FE //A12 = +5.17986512144075019133e-04
data8 0xBF611344289DE1E6 //A11 = -2.08438217390159994419e-03
data8 0x3F7AF9FE6AD16DC0 //A10 = +6.58606893292862351928e-03
data8 0xBF91D219E196CBA7 //A9 = -1.74030345858217321001e-02
data8 0x3FA4AFDDA355854C //A8 = +4.04042493708041968315e-02
data8 0xBFB5D465BB7025AE //A7 = -8.52721769916999425445e-02
data8 0x3FC54C15A95B717D //A6 = +1.66384418195672549029e-01
data8 0xBFD340A75B4B1AB5 //A5 = -3.00821150926292166899e-01
data8 0x3FDFFFC0BFCD247F //A4 = +4.99984919839853542841e-01
data8 0xBFE81270C361852B //A3 = -7.52251035312075583309e-01
data8 0x3FEFFFFFC67295FC //A2 = +9.99999892800303301771e-01
data8 0xBFF20DD74F8CD2BF //A1 = -1.12837916445020868099e+00
data8 0x3FEFFFFFFFFE7C1D //A0 = +9.99999999988975570714e-01
// Pol_1
data8 0xBDE8EC4BDD953B56 //A15 = -1.81338928934942767144e-10
data8 0x3E43607F269E2A1C //A14 = +9.02309090272196442358e-09
data8 0xBE8C4D9E69C10E02 //A13 = -2.10875261143659275328e-07
data8 0x3EC9CF2F84566725 //A12 = +3.07671055805877356583e-06
data8 0xBF007980B1B46A4D //A11 = -3.14228438702169818945e-05
data8 0x3F2F4C3AD6DEF24A //A10 = +2.38783056770846320260e-04
data8 0xBF56F5129F8D30FA //A9 = -1.40120333363130546426e-03
data8 0x3F7AA6C7ABFC38EE //A8 = +6.50671002200751820429e-03
data8 0xBF98E7522CB84BEF //A7 = -2.43199195666185511109e-02
data8 0x3FB2F68EB1C3D073 //A6 = +7.40746673580490638637e-02
data8 0xBFC7C16055AC6385 //A5 = -1.85588876564704611769e-01
data8 0x3FD8A707AEF5A440 //A4 = +3.85194702967570635211e-01
data8 0xBFE547BFE39AE2EA //A3 = -6.65008492032112467310e-01
data8 0x3FEE7C91BDF13578 //A2 = +9.52706213932898128515e-01
data8 0xBFF1CB5B61F8C589 //A1 = -1.11214769621105541214e+00
data8 0x3FEFEA56BC81FD37 //A0 = +9.97355812243688815239e-01
// Pol_2
data8 0xBD302724A12F46E0 //A15 = -5.73866382814058809406e-14
data8 0x3D98889B75D3102E //A14 = +5.57829983681360947356e-12
data8 0xBDF16EA15074A1E9 //A13 = -2.53671153922423457844e-10
data8 0x3E3EC6E688CFEE5F //A12 = +7.16581828336436419561e-09
data8 0xBE82E5ED44C52609 //A11 = -1.40802202239825487803e-07
data8 0x3EC120BE5CE42353 //A10 = +2.04180535157522081699e-06
data8 0xBEF7B8B0311A1911 //A9 = -2.26225266204633600888e-05
data8 0x3F29A281F43FC238 //A8 = +1.95577968156184077632e-04
data8 0xBF55E19858B3B7A4 //A7 = -1.33552434527526534043e-03
data8 0x3F7DAC8C3D12E5FD //A6 = +7.24463253680473816303e-03
data8 0xBF9FF9C04613FB47 //A5 = -3.12261622211693854028e-02
data8 0x3FBB3D5DBF9D9366 //A4 = +1.06405123978743883370e-01
data8 0xBFD224DE9F62C258 //A3 = -2.83500342989133623476e-01
data8 0x3FE28A95CB8C6D3E //A2 = +5.79417131000276437708e-01
data8 0xBFEC21205D358672 //A1 = -8.79043752717008257224e-01
data8 0x3FEDAE44D5EDFE5B //A0 = +9.27523057776805771830e-01
// Pol_3
data8 0xBCA3BCA734AC82F1 //A15 = -1.36952437983096410260e-16
data8 0x3D16740DC3990612 //A14 = +1.99425676175410093285e-14
data8 0xBD77F4353812C46A //A13 = -1.36162367755616790260e-12
data8 0x3DCFD0BE13C73DB4 //A12 = +5.78718761040355136007e-11
data8 0xBE1D728DF71189B4 //A11 = -1.71406885583934105120e-09
data8 0x3E64252C8CB710B5 //A10 = +3.75233795940731111303e-08
data8 0xBEA514B93180F33D //A9 = -6.28261292774310809962e-07
data8 0x3EE1381118CC7151 //A8 = +8.21066421390821904504e-06
data8 0xBF1634404FB0FA72 //A7 = -8.47019436358372148764e-05
data8 0x3F46B2CBBCF0EB32 //A6 = +6.92700845213200923490e-04
data8 0xBF725C2B445E6D81 //A5 = -4.48243046949004063741e-03
data8 0x3F974E7CFA4D89D9 //A4 = +2.27603462002522228717e-02
data8 0xBFB6D7BAC2E342D1 //A3 = -8.92292714882032736443e-02
data8 0x3FD0D156AD9CE2A6 //A2 = +2.62777013343603696631e-01
data8 0xBFE1C228572AADB0 //A1 = -5.54950876471982857725e-01
data8 0x3FE8A739F48B9A3B //A0 = +7.70413377406675619766e-01
LOCAL_OBJECT_END(erfc_p_table)
.section .text
GLOBAL_LIBM_ENTRY(erfcf)
// Form index i for table erfc_p_table as exponent of x
// We use i + bias in real calculations
{ .mlx
getf.exp GR_IndxPlusBias = f8 // (sign + exp + bias) of x
movl exp_GR_sig_inv_ln2 = 0xb8aa3b295c17f0bc //signif.of 1/ln2
}
{ .mlx
addl EXP_AD_TB1 = @ltoff(exp_table_1), gp
movl exp_GR_rshf_2to56 = 0x4768000000000000 // 1.100 2^(63+56)
}
;;
// Form argument EXP_NORM_f8 for exp(-x^2)
{ .mfi
ld8 EXP_AD_TB1 = [EXP_AD_TB1]
fcmp.ge.s1 p6,p7 = f8, f0 // p6: x >= 0 ,p7: x<0
mov GR_BIAS = 0x0FFFF
}
{ .mfi
mov exp_GR_exp_2tom56 = 0xffff-56
fnma.s1 EXP_NORM_f8 = f8, f8, f0 // -x^2
mov GR_ExpMask = 0x1ffff
}
;;
// Form two constants we need
// 1/ln2 * 2^63 to compute w = x * 1/ln2 * 128
// 1.1000..000 * 2^(63+63-7) to right shift int(w) into the significand
// p9: x = 0,+inf,-inf,nan,unnorm.
// p10: x!= 0,+inf,-inf,nan,unnorm.
{ .mfi
setf.sig EXP_INV_LN2_2TO63 = exp_GR_sig_inv_ln2 // Form 1/ln2*2^63
fclass.m p9,p10 = f8,0xef
shl GR_ShftPi_bias = GR_BIAS, 7
}
{ .mfi
setf.d EXP_RSHF_2TO56 = exp_GR_rshf_2to56 //Const 1.10*2^(63+56)
nop.f 0
and GR_IndxPlusBias = GR_IndxPlusBias, GR_ExpMask // i + bias
}
;;
{ .mfi
alloc r32 = ar.pfs, 0, 15, 4, 0
(p6) fma.s1 FR_AbsArg = f1, f0, f8 // |x| if x >= 0
cmp.lt p15,p0 = GR_IndxPlusBias, GR_BIAS//p15: i < 0 (for |x|<1)
}
{ .mlx
setf.exp EXP_2TOM56 = exp_GR_exp_2tom56 //2^-56 for scaling Nfloat
movl exp_GR_rshf = 0x43e8000000000000 //1.10 2^63,right shift.
}
;;
{ .mfi
ldfps FR_POS_ARG_ASYMP, FR_NEG_ARG_ASYMP = [EXP_AD_TB1],8
nop.f 0
(p15) mov GR_IndxPlusBias = GR_BIAS //Let i = 0 if i < 0
}
{ .mlx
mov GR_P_POINT_3 = 0x1A0
movl GR_05 = 0x3fe0000000000000
}
;;
// Form shift GR_ShftPi from the beginning of erfc_p_table
// to the polynomial with number i
{ .mfi
ldfps FR_UnfBound, FR_EpsNorm = [EXP_AD_TB1],8
nop.f 0
shl GR_ShftPi = GR_IndxPlusBias, 7
}
{ .mfi
setf.d EXP_RSHF = exp_GR_rshf // Form right shift 1.100 * 2^63
(p7) fms.s1 FR_AbsArg = f1, f0, f8 // |x| if x < 0
mov exp_TB1_size = 0x100
}
;;
// Form pointer GR_P_POINT_3 to the beginning of erfc_p_table
{ .mfi
setf.d FR_05 = GR_05
nop.f 0
sub GR_ShftPi = GR_ShftPi,GR_ShftPi_bias
}
{ .mfb
add GR_P_POINT_3 = GR_P_POINT_3, EXP_AD_TB1
nop.f 0
(p9) br.cond.spnt SPECIAL // For x = 0,+inf,-inf,nan,unnorm
}
;;
{ .mfi
add GR_P_POINT_1 = GR_P_POINT_3, GR_ShftPi
nop.f 0
add GR_P_POINT_2 = GR_P_POINT_3, GR_ShftPi
}
{ .mfi
ldfe exp_ln2_by_128_hi = [EXP_AD_TB1],16
fma.s1 FR_NormX = f8,f1,f0
add GR_P_POINT_3 = GR_P_POINT_3, GR_ShftPi
}
;;
// Load coefficients for polynomial P15(x)
{ .mfi
ldfpd FR_A15, FR_A14 = [GR_P_POINT_1], 16
nop.f 0
add GR_P_POINT_3 = 0x30, GR_P_POINT_3
}
{ .mfi
ldfe exp_ln2_by_128_lo = [EXP_AD_TB1], 16
nop.f 0
add GR_P_POINT_2 = 0x20, GR_P_POINT_2
}
;;
// Now EXP_AD_TB1 points to the beginning of table 1
{ .mlx
ldfpd FR_A13, FR_A12 = [GR_P_POINT_1]
movl GR_1_by_6 = 0x3FC5555555555555
}
{ .mfi
add GR_P_POINT_4 = 0x30, GR_P_POINT_2
nop.f 0
nop.i 0
}
;;
{ .mfi
ldfpd FR_A11, FR_A10 = [GR_P_POINT_2]
fma.s1 FR_2 = f1, f1, f1
mov exp_TB2_size = 0x80
}
{ .mfi
ldfpd FR_A9, FR_A8 = [GR_P_POINT_3],16
nop.f 0
add GR_P_POINT_1 = 0x60 ,GR_P_POINT_1
}
;;
// W = X * Inv_log2_by_128
// By adding 1.10...0*2^63 we shift and get round_int(W) in significand.
// We actually add 1.10...0*2^56 to X * Inv_log2 to do the same thing.
{ .mfi
ldfpd FR_A7, FR_A6 = [GR_P_POINT_3]
fma.s1 EXP_W_2TO56_RSH = EXP_NORM_f8,EXP_INV_LN2_2TO63,EXP_RSHF_2TO56
add EXP_AD_TB2 = exp_TB1_size, EXP_AD_TB1
}
{ .mfi
ldfpd FR_A5, FR_A4 = [GR_P_POINT_4], 16
nop.f 0
nop.i 0
}
;;
{ .mfi
ldfpd FR_A3, FR_A2 = [GR_P_POINT_4]
fmerge.s FR_X = f8,f8
nop.i 0
}
{ .mfi
ldfpd FR_A1, FR_A0 = [GR_P_POINT_1]
nop.f 0
nop.i 0
}
;;
//p14: x < - NEG_ARG_ASYMP = -4.4 -> erfcf(x) ~=~ 2.0
{ .mfi
setf.d FR_1_by_6 = GR_1_by_6
(p7) fcmp.gt.unc.s1 p14,p0 = FR_AbsArg, FR_NEG_ARG_ASYMP //p7: x < 0
nop.i 0
}
;;
//p15: x > POS_ARG_ASYMP = 10.06 -> erfcf(x) ~=~ 0.0
{ .mfi
nop.m 0
(p6) fcmp.gt.unc.s1 p15,p0 = FR_AbsArg, FR_POS_ARG_ASYMP //p6: x > 0
nop.i 0
}
;;
{ .mfi
nop.m 0
fcmp.le.s1 p8,p0 = FR_NormX, FR_UnfBound // p8: x <= UnfBound
nop.i 0
}
{ .mfb
nop.m 0
(p14) fnma.s.s0 FR_RESULT = FR_EpsNorm, FR_EpsNorm, FR_2//y = 2 if x <-4.4
(p14) br.ret.spnt b0
}
;;
// Nfloat = round_int(W)
// The signficand of EXP_W_2TO56_RSH contains the rounded integer part of W,
// as a twos complement number in the lower bits (that is, it may be negative).
// That twos complement number (called N) is put into exp_GR_N.
// Since EXP_W_2TO56_RSH is scaled by 2^56, it must be multiplied by 2^-56
// before the shift constant 1.10000 * 2^63 is subtracted to yield EXP_Nfloat.
// Thus, EXP_Nfloat contains the floating point version of N
{ .mfi
nop.m 0
fms.s1 EXP_Nfloat = EXP_W_2TO56_RSH, EXP_2TOM56, EXP_RSHF
nop.i 0
}
{ .mfb
(p15) mov GR_Parameter_TAG = 209
(p15) fma.s.s0 FR_RESULT = FR_EpsNorm,FR_EpsNorm,f0 //Result.for x>10.06
(p15) br.cond.spnt __libm_error_region
}
;;
// Now we can calculate polynomial P15(x)
{ .mfi
nop.m 0
fma.s1 FR_P15_1_1 = FR_AbsArg, FR_AbsArg, f0 // x ^2
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_P15_0_1 = FR_A15, FR_AbsArg, FR_A14
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 FR_P15_1_2 = FR_A13, FR_AbsArg, FR_A12
nop.i 0
}
;;
{ .mfi
getf.sig exp_GR_N = EXP_W_2TO56_RSH
fma.s1 FR_P15_2_1 = FR_A9, FR_AbsArg, FR_A8
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_P15_2_2 = FR_A11, FR_AbsArg, FR_A10
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 FR_P15_3_1 = FR_A5, FR_AbsArg, FR_A4
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_P15_3_2 = FR_A7, FR_AbsArg, FR_A6
nop.i 0
}
;;
// exp_GR_index_1 has index_1
// exp_GR_index_2_16 has index_2 * 16
// exp_GR_biased_M has M
// exp_GR_index_1_16 has index_1 * 16
// r2 has true M
{ .mfi
and exp_GR_index_1 = 0x0f, exp_GR_N
fma.s1 FR_P15_4_1 = FR_A1, FR_AbsArg, FR_A0
shr r2 = exp_GR_N, 0x7
}
{ .mfi
and exp_GR_index_2_16 = 0x70, exp_GR_N
fma.s1 FR_P15_4_2 = FR_A3, FR_AbsArg, FR_A2
nop.i 0
}
;;
// EXP_AD_T1 has address of T1
// EXP_AD_T2 has address if T2
{ .mfi
add EXP_AD_T2 = EXP_AD_TB2, exp_GR_index_2_16
nop.f 0
shladd EXP_AD_T1 = exp_GR_index_1, 4, EXP_AD_TB1
}
{ .mfi
addl exp_GR_biased_M = 0xffff, r2
fnma.s1 exp_r = EXP_Nfloat, exp_ln2_by_128_hi, EXP_NORM_f8
nop.i 0
}
;;
// Create Scale = 2^M
// r = x - Nfloat * ln2_by_128_hi
{ .mfi
setf.exp EXP_2M = exp_GR_biased_M
fma.s1 FR_P15_7_1 = FR_P15_0_1, FR_P15_1_1, FR_P15_1_2
nop.i 0
}
{ .mfi
ldfe exp_T2 = [EXP_AD_T2]
nop.f 0
nop.i 0
}
;;
// Load T1 and T2
{ .mfi
ldfe exp_T1 = [EXP_AD_T1]
fma.s1 FR_P15_7_2 = FR_P15_1_1, FR_P15_1_1, f0 // x^4
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_P15_8_1 = FR_P15_1_1, FR_P15_2_2, FR_P15_2_1
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 FR_P15_9_1 = FR_P15_1_1, FR_P15_4_2, FR_P15_4_1
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_P15_9_2 = FR_P15_1_1, FR_P15_3_2, FR_P15_3_1
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 exp_P = FR_1_by_6, exp_r, FR_05
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 exp_rsq = exp_r, exp_r, f0
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 FR_P15_13_1 = FR_P15_7_2, FR_P15_7_1, FR_P15_8_1
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 FR_P15_14_1 = FR_P15_7_2, FR_P15_9_2, FR_P15_9_1
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 FR_P15_14_2 = FR_P15_7_2, FR_P15_7_2, f0 // x^8
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 exp_P = exp_P, exp_rsq, exp_r
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 exp_S1 = EXP_2M, exp_T2, f0
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 FR_Pol = FR_P15_14_2, FR_P15_13_1, FR_P15_14_1 // P15(x)
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 exp_S = exp_S1, exp_T1, f0
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 FR_Exp = exp_S, exp_P, exp_S // exp(-x^2)
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s.s0 FR_Tmpf = f8, f1, f0 // Flag d
nop.i 0
}
;;
//p6: result for 0 < x < = POS_ARG_ASYMP
//p7: result for - NEG_ARG_ASYMP <= x < 0
//p8: exit for - NEG_ARG_ASYMP <= x <= UnfBound, x!=0
.pred.rel "mutex",p6,p7
{ .mfi
nop.m 0
(p6) fma.s.s0 f8 = FR_Exp, FR_Pol, f0
nop.i 0
}
{ .mfb
mov GR_Parameter_TAG = 209
(p7) fnma.s.s0 f8 = FR_Exp, FR_Pol, FR_2
(p8) br.ret.sptk b0
}
;;
//p10: branch for UnfBound < x < = POS_ARG_ASYMP
{ .mfb
nop.m 0
nop.f 0
(p10) br.cond.spnt __libm_error_region
}
;;
//Only via (p9) br.cond.spnt SPECIAL for x = 0,+inf,-inf,nan,unnorm
SPECIAL:
{ .mfi
nop.m 0
fclass.m.unc p10,p0 = f8,0x07 // p10: x = 0
nop.i 0
}
;;
{ .mfi
nop.m 0
fclass.m.unc p11,p0 = f8,0x21 // p11: x = +inf
nop.i 0
}
;;
{ .mfi
nop.m 0
fclass.m.unc p12,p0 = f8,0x22 // p12 x = -inf
nop.i 0
}
{ .mfb
nop.m 0
(p10) fma.s.s0 f8 = f1, f1, f0
(p10) br.ret.sptk b0 // Quick exit for x = 0
}
;;
{ .mfi
nop.m 0
fclass.m.unc p13,p0 = f8,0xc3 // p13: x = nan
nop.i 0
}
{ .mfb
nop.m 0
(p11) fma.s.s0 f8 = f0, f1, f0
(p11) br.ret.spnt b0 // Quick exit for x = +inf
}
;;
{ .mfi
nop.m 0
fclass.m.unc p14,p0 = f8,0x0b // P14: x = unnormalized
nop.i 0
}
{ .mfb
nop.m 0
(p12) fma.s.s0 f8 = f1, f1, f1
(p12) br.ret.spnt b0 // Quick exit for x = -inf
}
;;
{ .mfb
nop.m 0
(p13) fma.s.s0 f8 = f8, f1, f0
(p13) br.ret.sptk b0 // Quick exit for x = nan
}
;;
{ .mfb
nop.m 0
(p14) fnma.s.s0 f8 = f8, f1, f1
(p14) br.ret.sptk b0 // Quick exit for x = unnormalized
}
;;
GLOBAL_LIBM_END(erfcf)
// Call via (p10) br.cond.spnt __libm_error_region
// for UnfBound < x < = POS_ARG_ASYMP
// and
//
// call via (p15) br.cond.spnt __libm_error_region
// for x > POS_ARG_ASYMP
LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
{ .mfi
add GR_Parameter_Y=-32,sp // Parameter 2 value
nop.f 0
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
}
{ .mfi
.fframe 64
add sp=-64,sp // Create new stack
nop.f 0
mov GR_SAVE_GP=gp // Save gp
};;
{ .mmi
stfs [GR_Parameter_Y] = FR_Y,16 // STORE Parameter 2 on stack
add GR_Parameter_X = 16,sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0=b0 // Save b0
};;
.body
{ .mib
stfs [GR_Parameter_X] = FR_X // STORE Parameter 1 on stack
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
nop.b 0
}
{ .mib
stfs [GR_Parameter_Y] = FR_RESULT // STORE Parameter 3 on stack
add GR_Parameter_Y = -16,GR_Parameter_Y
br.call.sptk b0=__libm_error_support# // Call error handling function
};;
{ .mmi
nop.m 0
nop.m 0
add GR_Parameter_RESULT = 48,sp
};;
{ .mmi
ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
.restore sp
add sp = 64,sp // Restore stack pointer
mov b0 = GR_SAVE_B0 // Restore return address
};;
{ .mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 // Return
};;
LOCAL_LIBM_END(__libm_error_region)
.type __libm_error_support#,@function
.global __libm_error_support#
|