1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
|
.file "sincos.s"
// Copyright (c) 2000 - 2004, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History
//==============================================================
// 02/02/00 Initial version
// 04/02/00 Unwind support added.
// 06/16/00 Updated tables to enforce symmetry
// 08/31/00 Saved 2 cycles in main path, and 9 in other paths.
// 09/20/00 The updated tables regressed to an old version, so reinstated them
// 10/18/00 Changed one table entry to ensure symmetry
// 01/03/01 Improved speed, fixed flag settings for small arguments.
// 02/18/02 Large arguments processing routine excluded
// 05/20/02 Cleaned up namespace and sf0 syntax
// 06/03/02 Insure inexact flag set for large arg result
// 09/05/02 Work range is widened by reduction strengthen (3 parts of Pi/16)
// 02/10/03 Reordered header: .section, .global, .proc, .align
// 08/08/03 Improved performance
// 10/28/04 Saved sincos_r_sincos to avoid clobber by dynamic loader
// API
//==============================================================
// double sin( double x);
// double cos( double x);
//
// Overview of operation
//==============================================================
//
// Step 1
// ======
// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k where k=4
// divide x by pi/2^k.
// Multiply by 2^k/pi.
// nfloat = Round result to integer (round-to-nearest)
//
// r = x - nfloat * pi/2^k
// Do this as ((((x - nfloat * HIGH(pi/2^k))) -
// nfloat * LOW(pi/2^k)) -
// nfloat * LOWEST(pi/2^k) for increased accuracy.
// pi/2^k is stored as two numbers that when added make pi/2^k.
// pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)
// HIGH and LOW parts are rounded to zero values,
// and LOWEST is rounded to nearest one.
//
// x = (nfloat * pi/2^k) + r
// r is small enough that we can use a polynomial approximation
// and is referred to as the reduced argument.
//
// Step 3
// ======
// Take the unreduced part and remove the multiples of 2pi.
// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits
//
// nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1)
// N * 2^(k+1)
// nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k
// nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k
// nfloat * pi/2^k = N2pi + M * pi/2^k
//
//
// Sin(x) = Sin((nfloat * pi/2^k) + r)
// = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r)
//
// Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k)
// = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k)
// = Sin(Mpi/2^k)
//
// Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k)
// = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k)
// = Cos(Mpi/2^k)
//
// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
//
//
// Step 4
// ======
// 0 <= M < 2^(k+1)
// There are 2^(k+1) Sin entries in a table.
// There are 2^(k+1) Cos entries in a table.
//
// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup.
//
//
// Step 5
// ======
// Calculate Cos(r) and Sin(r) by polynomial approximation.
//
// Cos(r) = 1 + r^2 q1 + r^4 q2 + r^6 q3 + ... = Series for Cos
// Sin(r) = r + r^3 p1 + r^5 p2 + r^7 p3 + ... = Series for Sin
//
// and the coefficients q1, q2, ... and p1, p2, ... are stored in a table
//
//
// Calculate
// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
//
// as follows
//
// S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)
// rsq = r*r
//
//
// P = p1 + r^2p2 + r^4p3 + r^6p4
// Q = q1 + r^2q2 + r^4q3 + r^6q4
//
// rcub = r * rsq
// Sin(r) = r + rcub * P
// = r + r^3p1 + r^5p2 + r^7p3 + r^9p4 + ... = Sin(r)
//
// The coefficients are not exactly these values, but almost.
//
// p1 = -1/6 = -1/3!
// p2 = 1/120 = 1/5!
// p3 = -1/5040 = -1/7!
// p4 = 1/362889 = 1/9!
//
// P = r + rcub * P
//
// Answer = S[m] Cos(r) + [Cm] P
//
// Cos(r) = 1 + rsq Q
// Cos(r) = 1 + r^2 Q
// Cos(r) = 1 + r^2 (q1 + r^2q2 + r^4q3 + r^6q4)
// Cos(r) = 1 + r^2q1 + r^4q2 + r^6q3 + r^8q4 + ...
//
// S[m] Cos(r) = S[m](1 + rsq Q)
// S[m] Cos(r) = S[m] + Sm rsq Q
// S[m] Cos(r) = S[m] + s_rsq Q
// Q = S[m] + s_rsq Q
//
// Then,
//
// Answer = Q + C[m] P
// Registers used
//==============================================================
// general input registers:
// r14 -> r26
// r32 -> r35
// predicate registers used:
// p6 -> p11
// floating-point registers used
// f9 -> f15
// f32 -> f61
// Assembly macros
//==============================================================
sincos_NORM_f8 = f9
sincos_W = f10
sincos_int_Nfloat = f11
sincos_Nfloat = f12
sincos_r = f13
sincos_rsq = f14
sincos_rcub = f15
sincos_save_tmp = f15
sincos_Inv_Pi_by_16 = f32
sincos_Pi_by_16_1 = f33
sincos_Pi_by_16_2 = f34
sincos_Inv_Pi_by_64 = f35
sincos_Pi_by_16_3 = f36
sincos_r_exact = f37
sincos_Sm = f38
sincos_Cm = f39
sincos_P1 = f40
sincos_Q1 = f41
sincos_P2 = f42
sincos_Q2 = f43
sincos_P3 = f44
sincos_Q3 = f45
sincos_P4 = f46
sincos_Q4 = f47
sincos_P_temp1 = f48
sincos_P_temp2 = f49
sincos_Q_temp1 = f50
sincos_Q_temp2 = f51
sincos_P = f52
sincos_Q = f53
sincos_srsq = f54
sincos_SIG_INV_PI_BY_16_2TO61 = f55
sincos_RSHF_2TO61 = f56
sincos_RSHF = f57
sincos_2TOM61 = f58
sincos_NFLOAT = f59
sincos_W_2TO61_RSH = f60
fp_tmp = f61
/////////////////////////////////////////////////////////////
sincos_GR_sig_inv_pi_by_16 = r14
sincos_GR_rshf_2to61 = r15
sincos_GR_rshf = r16
sincos_GR_exp_2tom61 = r17
sincos_GR_n = r18
sincos_GR_m = r19
sincos_GR_32m = r19
sincos_GR_all_ones = r19
sincos_AD_1 = r20
sincos_AD_2 = r21
sincos_exp_limit = r22
sincos_r_signexp = r23
sincos_r_17_ones = r24
sincos_r_sincos = r25
sincos_r_exp = r26
GR_SAVE_PFS = r33
GR_SAVE_B0 = r34
GR_SAVE_GP = r35
GR_SAVE_r_sincos = r36
RODATA
// Pi/16 parts
.align 16
LOCAL_OBJECT_START(double_sincos_pi)
data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part
data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part
data8 0xA4093822299F31D0, 0x00003F7A // pi/16 3rd part
LOCAL_OBJECT_END(double_sincos_pi)
// Coefficients for polynomials
LOCAL_OBJECT_START(double_sincos_pq_k4)
data8 0x3EC71C963717C63A // P4
data8 0x3EF9FFBA8F191AE6 // Q4
data8 0xBF2A01A00F4E11A8 // P3
data8 0xBF56C16C05AC77BF // Q3
data8 0x3F8111111110F167 // P2
data8 0x3FA555555554DD45 // Q2
data8 0xBFC5555555555555 // P1
data8 0xBFDFFFFFFFFFFFFC // Q1
LOCAL_OBJECT_END(double_sincos_pq_k4)
// Sincos table (S[m], C[m])
LOCAL_OBJECT_START(double_sin_cos_beta_k4)
data8 0x0000000000000000 , 0x00000000 // sin( 0 pi/16) S0
data8 0x8000000000000000 , 0x00003fff // cos( 0 pi/16) C0
//
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin( 1 pi/16) S1
data8 0xfb14be7fbae58157 , 0x00003ffe // cos( 1 pi/16) C1
//
data8 0xc3ef1535754b168e , 0x00003ffd // sin( 2 pi/16) S2
data8 0xec835e79946a3146 , 0x00003ffe // cos( 2 pi/16) C2
//
data8 0x8e39d9cd73464364 , 0x00003ffe // sin( 3 pi/16) S3
data8 0xd4db3148750d181a , 0x00003ffe // cos( 3 pi/16) C3
//
data8 0xb504f333f9de6484 , 0x00003ffe // sin( 4 pi/16) S4
data8 0xb504f333f9de6484 , 0x00003ffe // cos( 4 pi/16) C4
//
//
data8 0xd4db3148750d181a , 0x00003ffe // sin( 5 pi/16) C3
data8 0x8e39d9cd73464364 , 0x00003ffe // cos( 5 pi/16) S3
//
data8 0xec835e79946a3146 , 0x00003ffe // sin( 6 pi/16) C2
data8 0xc3ef1535754b168e , 0x00003ffd // cos( 6 pi/16) S2
//
data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 7 pi/16) C1
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos( 7 pi/16) S1
//
data8 0x8000000000000000 , 0x00003fff // sin( 8 pi/16) C0
data8 0x0000000000000000 , 0x00000000 // cos( 8 pi/16) S0
//
//
data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 9 pi/16) C1
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos( 9 pi/16) -S1
//
data8 0xec835e79946a3146 , 0x00003ffe // sin(10 pi/16) C2
data8 0xc3ef1535754b168e , 0x0000bffd // cos(10 pi/16) -S2
//
data8 0xd4db3148750d181a , 0x00003ffe // sin(11 pi/16) C3
data8 0x8e39d9cd73464364 , 0x0000bffe // cos(11 pi/16) -S3
//
data8 0xb504f333f9de6484 , 0x00003ffe // sin(12 pi/16) S4
data8 0xb504f333f9de6484 , 0x0000bffe // cos(12 pi/16) -S4
//
//
data8 0x8e39d9cd73464364 , 0x00003ffe // sin(13 pi/16) S3
data8 0xd4db3148750d181a , 0x0000bffe // cos(13 pi/16) -C3
//
data8 0xc3ef1535754b168e , 0x00003ffd // sin(14 pi/16) S2
data8 0xec835e79946a3146 , 0x0000bffe // cos(14 pi/16) -C2
//
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin(15 pi/16) S1
data8 0xfb14be7fbae58157 , 0x0000bffe // cos(15 pi/16) -C1
//
data8 0x0000000000000000 , 0x00000000 // sin(16 pi/16) S0
data8 0x8000000000000000 , 0x0000bfff // cos(16 pi/16) -C0
//
//
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // sin(17 pi/16) -S1
data8 0xfb14be7fbae58157 , 0x0000bffe // cos(17 pi/16) -C1
//
data8 0xc3ef1535754b168e , 0x0000bffd // sin(18 pi/16) -S2
data8 0xec835e79946a3146 , 0x0000bffe // cos(18 pi/16) -C2
//
data8 0x8e39d9cd73464364 , 0x0000bffe // sin(19 pi/16) -S3
data8 0xd4db3148750d181a , 0x0000bffe // cos(19 pi/16) -C3
//
data8 0xb504f333f9de6484 , 0x0000bffe // sin(20 pi/16) -S4
data8 0xb504f333f9de6484 , 0x0000bffe // cos(20 pi/16) -S4
//
//
data8 0xd4db3148750d181a , 0x0000bffe // sin(21 pi/16) -C3
data8 0x8e39d9cd73464364 , 0x0000bffe // cos(21 pi/16) -S3
//
data8 0xec835e79946a3146 , 0x0000bffe // sin(22 pi/16) -C2
data8 0xc3ef1535754b168e , 0x0000bffd // cos(22 pi/16) -S2
//
data8 0xfb14be7fbae58157 , 0x0000bffe // sin(23 pi/16) -C1
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos(23 pi/16) -S1
//
data8 0x8000000000000000 , 0x0000bfff // sin(24 pi/16) -C0
data8 0x0000000000000000 , 0x00000000 // cos(24 pi/16) S0
//
//
data8 0xfb14be7fbae58157 , 0x0000bffe // sin(25 pi/16) -C1
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos(25 pi/16) S1
//
data8 0xec835e79946a3146 , 0x0000bffe // sin(26 pi/16) -C2
data8 0xc3ef1535754b168e , 0x00003ffd // cos(26 pi/16) S2
//
data8 0xd4db3148750d181a , 0x0000bffe // sin(27 pi/16) -C3
data8 0x8e39d9cd73464364 , 0x00003ffe // cos(27 pi/16) S3
//
data8 0xb504f333f9de6484 , 0x0000bffe // sin(28 pi/16) -S4
data8 0xb504f333f9de6484 , 0x00003ffe // cos(28 pi/16) S4
//
//
data8 0x8e39d9cd73464364 , 0x0000bffe // sin(29 pi/16) -S3
data8 0xd4db3148750d181a , 0x00003ffe // cos(29 pi/16) C3
//
data8 0xc3ef1535754b168e , 0x0000bffd // sin(30 pi/16) -S2
data8 0xec835e79946a3146 , 0x00003ffe // cos(30 pi/16) C2
//
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // sin(31 pi/16) -S1
data8 0xfb14be7fbae58157 , 0x00003ffe // cos(31 pi/16) C1
//
data8 0x0000000000000000 , 0x00000000 // sin(32 pi/16) S0
data8 0x8000000000000000 , 0x00003fff // cos(32 pi/16) C0
LOCAL_OBJECT_END(double_sin_cos_beta_k4)
.section .text
////////////////////////////////////////////////////////
// There are two entry points: sin and cos
// If from sin, p8 is true
// If from cos, p9 is true
GLOBAL_IEEE754_ENTRY(sin)
{ .mlx
getf.exp sincos_r_signexp = f8
movl sincos_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A // signd of 16/pi
}
{ .mlx
addl sincos_AD_1 = @ltoff(double_sincos_pi), gp
movl sincos_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2)
}
;;
{ .mfi
ld8 sincos_AD_1 = [sincos_AD_1]
fnorm.s0 sincos_NORM_f8 = f8 // Normalize argument
cmp.eq p8,p9 = r0, r0 // set p8 (clear p9) for sin
}
{ .mib
mov sincos_GR_exp_2tom61 = 0xffff-61 // exponent of scale 2^-61
mov sincos_r_sincos = 0x0 // sincos_r_sincos = 0 for sin
br.cond.sptk _SINCOS_COMMON // go to common part
}
;;
GLOBAL_IEEE754_END(sin)
GLOBAL_IEEE754_ENTRY(cos)
{ .mlx
getf.exp sincos_r_signexp = f8
movl sincos_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A // signd of 16/pi
}
{ .mlx
addl sincos_AD_1 = @ltoff(double_sincos_pi), gp
movl sincos_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2)
}
;;
{ .mfi
ld8 sincos_AD_1 = [sincos_AD_1]
fnorm.s1 sincos_NORM_f8 = f8 // Normalize argument
cmp.eq p9,p8 = r0, r0 // set p9 (clear p8) for cos
}
{ .mib
mov sincos_GR_exp_2tom61 = 0xffff-61 // exp of scale 2^-61
mov sincos_r_sincos = 0x8 // sincos_r_sincos = 8 for cos
nop.b 999
}
;;
////////////////////////////////////////////////////////
// All entry points end up here.
// If from sin, sincos_r_sincos is 0 and p8 is true
// If from cos, sincos_r_sincos is 8 = 2^(k-1) and p9 is true
// We add sincos_r_sincos to N
///////////// Common sin and cos part //////////////////
_SINCOS_COMMON:
// Form two constants we need
// 16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand
// 1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand
{ .mfi
setf.sig sincos_SIG_INV_PI_BY_16_2TO61 = sincos_GR_sig_inv_pi_by_16
fclass.m p6,p0 = f8, 0xe7 // if x = 0,inf,nan
mov sincos_exp_limit = 0x1001a
}
{ .mlx
setf.d sincos_RSHF_2TO61 = sincos_GR_rshf_2to61
movl sincos_GR_rshf = 0x43e8000000000000 // 1.1 2^63
} // Right shift
;;
// Form another constant
// 2^-61 for scaling Nfloat
// 0x1001a is register_bias + 27.
// So if f8 >= 2^27, go to large argument routines
{ .mfi
alloc r32 = ar.pfs, 1, 4, 0, 0
fclass.m p11,p0 = f8, 0x0b // Test for x=unorm
mov sincos_GR_all_ones = -1 // For "inexect" constant create
}
{ .mib
setf.exp sincos_2TOM61 = sincos_GR_exp_2tom61
nop.i 999
(p6) br.cond.spnt _SINCOS_SPECIAL_ARGS
}
;;
// Load the two pieces of pi/16
// Form another constant
// 1.1000...000 * 2^63, the right shift constant
{ .mmb
ldfe sincos_Pi_by_16_1 = [sincos_AD_1],16
setf.d sincos_RSHF = sincos_GR_rshf
(p11) br.cond.spnt _SINCOS_UNORM // Branch if x=unorm
}
;;
_SINCOS_COMMON2:
// Return here if x=unorm
// Create constant used to set inexact
{ .mmi
ldfe sincos_Pi_by_16_2 = [sincos_AD_1],16
setf.sig fp_tmp = sincos_GR_all_ones
nop.i 999
};;
// Select exponent (17 lsb)
{ .mfi
ldfe sincos_Pi_by_16_3 = [sincos_AD_1],16
nop.f 999
dep.z sincos_r_exp = sincos_r_signexp, 0, 17
};;
// Polynomial coefficients (Q4, P4, Q3, P3, Q2, Q1, P2, P1) loading
// p10 is true if we must call routines to handle larger arguments
// p10 is true if f8 exp is >= 0x1001a (2^27)
{ .mmb
ldfpd sincos_P4,sincos_Q4 = [sincos_AD_1],16
cmp.ge p10,p0 = sincos_r_exp,sincos_exp_limit
(p10) br.cond.spnt _SINCOS_LARGE_ARGS // Go to "large args" routine
};;
// sincos_W = x * sincos_Inv_Pi_by_16
// Multiply x by scaled 16/pi and add large const to shift integer part of W to
// rightmost bits of significand
{ .mfi
ldfpd sincos_P3,sincos_Q3 = [sincos_AD_1],16
fma.s1 sincos_W_2TO61_RSH = sincos_NORM_f8,sincos_SIG_INV_PI_BY_16_2TO61,sincos_RSHF_2TO61
nop.i 999
};;
// get N = (int)sincos_int_Nfloat
// sincos_NFLOAT = Round_Int_Nearest(sincos_W)
// This is done by scaling back by 2^-61 and subtracting the shift constant
{ .mmf
getf.sig sincos_GR_n = sincos_W_2TO61_RSH
ldfpd sincos_P2,sincos_Q2 = [sincos_AD_1],16
fms.s1 sincos_NFLOAT = sincos_W_2TO61_RSH,sincos_2TOM61,sincos_RSHF
};;
// sincos_r = -sincos_Nfloat * sincos_Pi_by_16_1 + x
{ .mfi
ldfpd sincos_P1,sincos_Q1 = [sincos_AD_1],16
fnma.s1 sincos_r = sincos_NFLOAT, sincos_Pi_by_16_1, sincos_NORM_f8
nop.i 999
};;
// Add 2^(k-1) (which is in sincos_r_sincos) to N
{ .mmi
add sincos_GR_n = sincos_GR_n, sincos_r_sincos
;;
// Get M (least k+1 bits of N)
and sincos_GR_m = 0x1f,sincos_GR_n
nop.i 999
};;
// sincos_r = sincos_r -sincos_Nfloat * sincos_Pi_by_16_2
{ .mfi
nop.m 999
fnma.s1 sincos_r = sincos_NFLOAT, sincos_Pi_by_16_2, sincos_r
shl sincos_GR_32m = sincos_GR_m,5
};;
// Add 32*M to address of sin_cos_beta table
// For sin denorm. - set uflow
{ .mfi
add sincos_AD_2 = sincos_GR_32m, sincos_AD_1
(p8) fclass.m.unc p10,p0 = f8,0x0b
nop.i 999
};;
// Load Sin and Cos table value using obtained index m (sincosf_AD_2)
{ .mfi
ldfe sincos_Sm = [sincos_AD_2],16
nop.f 999
nop.i 999
};;
// get rsq = r*r
{ .mfi
ldfe sincos_Cm = [sincos_AD_2]
fma.s1 sincos_rsq = sincos_r, sincos_r, f0 // r^2 = r*r
nop.i 999
}
{ .mfi
nop.m 999
fmpy.s0 fp_tmp = fp_tmp,fp_tmp // forces inexact flag
nop.i 999
};;
// sincos_r_exact = sincos_r -sincos_Nfloat * sincos_Pi_by_16_3
{ .mfi
nop.m 999
fnma.s1 sincos_r_exact = sincos_NFLOAT, sincos_Pi_by_16_3, sincos_r
nop.i 999
};;
// Polynomials calculation
// P_1 = P4*r^2 + P3
// Q_2 = Q4*r^2 + Q3
{ .mfi
nop.m 999
fma.s1 sincos_P_temp1 = sincos_rsq, sincos_P4, sincos_P3
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 sincos_Q_temp1 = sincos_rsq, sincos_Q4, sincos_Q3
nop.i 999
};;
// get rcube = r^3 and S[m]*r^2
{ .mfi
nop.m 999
fmpy.s1 sincos_srsq = sincos_Sm,sincos_rsq
nop.i 999
}
{ .mfi
nop.m 999
fmpy.s1 sincos_rcub = sincos_r_exact, sincos_rsq
nop.i 999
};;
// Polynomials calculation
// Q_2 = Q_1*r^2 + Q2
// P_1 = P_1*r^2 + P2
{ .mfi
nop.m 999
fma.s1 sincos_Q_temp2 = sincos_rsq, sincos_Q_temp1, sincos_Q2
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 sincos_P_temp2 = sincos_rsq, sincos_P_temp1, sincos_P2
nop.i 999
};;
// Polynomials calculation
// Q = Q_2*r^2 + Q1
// P = P_2*r^2 + P1
{ .mfi
nop.m 999
fma.s1 sincos_Q = sincos_rsq, sincos_Q_temp2, sincos_Q1
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 sincos_P = sincos_rsq, sincos_P_temp2, sincos_P1
nop.i 999
};;
// Get final P and Q
// Q = Q*S[m]*r^2 + S[m]
// P = P*r^3 + r
{ .mfi
nop.m 999
fma.s1 sincos_Q = sincos_srsq,sincos_Q, sincos_Sm
nop.i 999
}
{ .mfi
nop.m 999
fma.s1 sincos_P = sincos_rcub,sincos_P, sincos_r_exact
nop.i 999
};;
// If sin(denormal), force underflow to be set
{ .mfi
nop.m 999
(p10) fmpy.d.s0 fp_tmp = sincos_NORM_f8,sincos_NORM_f8
nop.i 999
};;
// Final calculation
// result = C[m]*P + Q
{ .mfb
nop.m 999
fma.d.s0 f8 = sincos_Cm, sincos_P, sincos_Q
br.ret.sptk b0 // Exit for common path
};;
////////// x = 0/Inf/NaN path //////////////////
_SINCOS_SPECIAL_ARGS:
.pred.rel "mutex",p8,p9
// sin(+/-0) = +/-0
// sin(Inf) = NaN
// sin(NaN) = NaN
{ .mfi
nop.m 999
(p8) fma.d.s0 f8 = f8, f0, f0 // sin(+/-0,NaN,Inf)
nop.i 999
}
// cos(+/-0) = 1.0
// cos(Inf) = NaN
// cos(NaN) = NaN
{ .mfb
nop.m 999
(p9) fma.d.s0 f8 = f8, f0, f1 // cos(+/-0,NaN,Inf)
br.ret.sptk b0 // Exit for x = 0/Inf/NaN path
};;
_SINCOS_UNORM:
// Here if x=unorm
{ .mfb
getf.exp sincos_r_signexp = sincos_NORM_f8 // Get signexp of x
fcmp.eq.s0 p11,p0 = f8, f0 // Dummy op to set denorm flag
br.cond.sptk _SINCOS_COMMON2 // Return to main path
};;
GLOBAL_IEEE754_END(cos)
//////////// x >= 2^27 - large arguments routine call ////////////
LOCAL_LIBM_ENTRY(__libm_callout_sincos)
_SINCOS_LARGE_ARGS:
.prologue
{ .mfi
mov GR_SAVE_r_sincos = sincos_r_sincos // Save sin or cos
nop.f 999
.save ar.pfs,GR_SAVE_PFS
mov GR_SAVE_PFS = ar.pfs
}
;;
{ .mfi
mov GR_SAVE_GP = gp
nop.f 999
.save b0, GR_SAVE_B0
mov GR_SAVE_B0 = b0
}
.body
{ .mbb
setf.sig sincos_save_tmp = sincos_GR_all_ones// inexact set
nop.b 999
(p8) br.call.sptk.many b0 = __libm_sin_large# // sin(large_X)
};;
{ .mbb
cmp.ne p9,p0 = GR_SAVE_r_sincos, r0 // set p9 if cos
nop.b 999
(p9) br.call.sptk.many b0 = __libm_cos_large# // cos(large_X)
};;
{ .mfi
mov gp = GR_SAVE_GP
fma.d.s0 f8 = f8, f1, f0 // Round result to double
mov b0 = GR_SAVE_B0
}
// Force inexact set
{ .mfi
nop.m 999
fmpy.s0 sincos_save_tmp = sincos_save_tmp, sincos_save_tmp
nop.i 999
};;
{ .mib
nop.m 999
mov ar.pfs = GR_SAVE_PFS
br.ret.sptk b0 // Exit for large arguments routine call
};;
LOCAL_LIBM_END(__libm_callout_sincos)
.type __libm_sin_large#,@function
.global __libm_sin_large#
.type __libm_cos_large#,@function
.global __libm_cos_large#
|