summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/s_asinh.S
blob: c5aaee707291ff9f8b7860113e774bdcf02503be (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
.file "asinh.s"


// Copyright (c) 2000 - 2005, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.

// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// ==============================================================
// History
// ==============================================================
// 04/02/01 Initial version
// 04/19/01 Improved speed of the paths #1,2,3,4,5
// 10/18/01 Improved accuracy
// 05/20/02 Cleaned up namespace and sf0 syntax
// 02/06/03 Reordered header: .section, .global, .proc, .align
// 05/21/03 Improved performance, fixed to handle unorms
// 03/31/05 Reformatted delimiters between data tables
//
// API
// ==============================================================
// double asinh(double)
//
// Overview of operation
// ==============================================================
//
// There are 7 paths:
// 1. x = 0.0
//    Return asinh(x) = 0.0
//
// 2. 0.0 <|x| < 2^(-3)
//    Return asinh(x) = POL13(x),
//         where POL13(x) = (x^2*C13 + ...)*x^2 + C5)*x^2 + C3)*x^3 + x
//
// 3. 2^(-3) <= |x| < 2^63
//    Return asinh(x) = sign(x)*(log(|x| + sqrt(x^2 + 1.0)))
//    To compute x + sqrt(x^2 + 1.0) modified Newton Raphson method is used
//      (3 iterations)
//    Algorithm description for log function see below.
//
// 4. 2^63 <= |x| < +INF
//    Return asinh(x) = sign(x)*log(2*|x|)
//    Algorithm description for log function see below.
//
// 5. x = INF
//    Return asinh(x) = INF
//
// 6. x = [S,Q]NaN
//    Return asinh(x) = QNaN
//
// 7. x = denormal
//    Return asinh(x) = x correctly rounded
//
//==============================================================
// Algorithm Description for log(x) function
// Below we are using the fact that inequality x - 1.0 > 2^(-6) is always
//   true for this asinh implementation
//
// Consider  x = 2^N 1.f1 f2 f3 f4...f63
// Log(x) = log(frcpa(x) x/frcpa(x))
//        = log(1/frcpa(x)) + log(frcpa(x) x)
//        = -log(frcpa(x)) + log(frcpa(x) x)
//
// frcpa(x)       = 2^-N frcpa((1.f1 f2 ... f63)
//
// -log(frcpa(x)) = -log(C)
//                = -log(2^-N) - log(frcpa(1.f1 f2 ... f63))
//
// -log(frcpa(x)) = -log(C)
//                = +Nlog2 - log(frcpa(1.f1 f2 ... f63))
//
// -log(frcpa(x)) = -log(C)
//                = +Nlog2 + log(frcpa(1.f1 f2 ... f63))
//
// Log(x) = log(1/frcpa(x)) + log(frcpa(x) x)
//
// Log(x) =  +Nlog2 + log(1./frcpa(1.f1 f2 ... f63)) + log(frcpa(x) x)
// Log(x) =  +Nlog2 - log(/frcpa(1.f1 f2 ... f63))   + log(frcpa(x) x)
// Log(x) =  +Nlog2 + T                              + log(frcpa(x) x)
//
// Log(x) =  +Nlog2 + T                     + log(C x)
//
// Cx = 1 + r
//
// Log(x) =  +Nlog2 + T  + log(1+r)
// Log(x) =  +Nlog2 + T  + Series( r - r^2/2 + r^3/3 - r^4/4 ....)
//
// 1.f1 f2 ... f8 has 256 entries.
// They are 1 + k/2^8, k = 0 ... 255
// These 256 values are the table entries.
//
// Implementation
//==============================================================
// C = frcpa(x)
// r = C * x - 1
//
// Form rseries = r + P1*r^2 + P2*r^3 + P3*r^4 + P4*r^5 + P5*r^6
//
// x = f * 2*n where f is 1.f_1f_2f_3....f_63
// Nfloat = float(n)  where n is the true unbiased exponent
// pre-index = f_1f_2....f_8
// index = pre_index * 16
// get the dxt table entry at index + offset = T
//
// result = (T + Nfloat * log(2)) + rseries
//
// The T table is calculated as follows
// Form x_k = 1 + k/2^8 where k goes from 0... 255
//      y_k = frcpa(x_k)
//      log(1/y_k)  in quad and round to double-extended
//
//
// Registers used
//==============================================================
// Floating Point registers used:
// f8, input
// f9 -> f15,  f32 -> f68

// General registers used:
// r14 -> r27

// Predicate registers used:
// p6 -> p14

// p6 to filter out case when x = [Q,S]NaN or INF or zero
// p7 to filter out case when x < 0.0
// p8 to select path #2
// p9 used in the frcpa from path #3
// p11 to filter out case when x >= 0
// p12 to filter out case when x = unorm
// p13 to select path #4
// Assembly macros
//==============================================================
log_GR_exp_17_ones    = r14
log_GR_signexp_f8     = r15
log_table_address2    = r16
log_GR_exp_16_ones    = r17
log_GR_exp_f8         = r18
log_GR_true_exp_f8    = r19
log_GR_significand_f8 = r20
log_GR_index          = r21
log_GR_comp2          = r22
asinh_GR_f8           = r23
asinh_GR_comp         = r24
asinh_GR_f8           = r25
log_table_address3    = r26
NR_table_address      = r27

//==============================================================
log_y            = f9
NR1              = f10
NR2              = f11
log_y_rs         = f12
log_y_rs_iter    = f13
log_y_rs_iter1   = f14
fNormX           = f15
asinh_w_sq       = f32
log_C13          = f33
log_C11          = f34
log_P3           = f35
log_P2           = f36
log_P1           = f37
log_P5           = f38
log_P4           = f39
log_C3           = f40
log_C5           = f41
log_C7           = f42
log2             = f43
asinh_f8         = f44
log_C            = f45
log_arg          = f46
log_C9           = f47
asinh_w_four     = f48
log_int_Nfloat   = f49
log_r            = f50
log_rsq          = f51
log_rp_p4        = f52
log_rp_p32       = f53
log_rcube        = f54
log_rp_p10       = f55
log_rp_p2        = f56
log_Nfloat       = f57
log_T            = f58
log_r2P_r        = f59
log_T_plus_Nlog2 = f60
asinh_w_3        = f61
asinh_w_5        = f62
asinh_w_cube     = f63
asinh_w_7        = f64
log_arg_early    = f65
asinh_w_9        = f66
asinh_w_13       = f67
asinh_w_seven    = f68

// Data tables
//==============================================================

RODATA
.align 16

LOCAL_OBJECT_START(log_table_1)
data8 0xBFC5555DA7212371 // P5
data8 0x3FC999A19EEF5826 // P4
data8 0xBFCFFFFFFFFEF009 // P3
data8 0x3FD555555554ECB2 // P2
data8 0xBFE0000000000000 // P1 = -0.5
data8 0x0000000000000000 // pad
data8 0xb17217f7d1cf79ac, 0x00003ffe  // log2
LOCAL_OBJECT_END(log_table_1)

LOCAL_OBJECT_START(log_table_2)
data8 0x3FE0000000000000 // 0.5
data8 0x4008000000000000 // 3.0
//
data8 0x8824BE4D74BC4F00, 0x00003FF9 // C13
data8 0xB725A2CD9556CC57, 0x0000BFF9 // C11
data8 0xF8E339127FBFF49D, 0x00003FF9 // C9
data8 0xB6DB6D7DCE17CB78, 0x0000BFFA // C7
data8 0x999999998802CCEF, 0x00003FFB // C5
data8 0xAAAAAAAAAAA8DC40, 0x0000BFFC // C3
LOCAL_OBJECT_END(log_table_2)


LOCAL_OBJECT_START(log_table_3)
data8 0x80200aaeac44ef38 , 0x00003ff6 //   log(1/frcpa(1+  0/2^-8))
//
data8 0xc09090a2c35aa070 , 0x00003ff7 //   log(1/frcpa(1+  1/2^-8))
data8 0xa0c94fcb41977c75 , 0x00003ff8 //   log(1/frcpa(1+  2/2^-8))
data8 0xe18b9c263af83301 , 0x00003ff8 //   log(1/frcpa(1+  3/2^-8))
data8 0x8d35c8d6399c30ea , 0x00003ff9 //   log(1/frcpa(1+  4/2^-8))
data8 0xadd4d2ecd601cbb8 , 0x00003ff9 //   log(1/frcpa(1+  5/2^-8))
//
data8 0xce95403a192f9f01 , 0x00003ff9 //   log(1/frcpa(1+  6/2^-8))
data8 0xeb59392cbcc01096 , 0x00003ff9 //   log(1/frcpa(1+  7/2^-8))
data8 0x862c7d0cefd54c5d , 0x00003ffa //   log(1/frcpa(1+  8/2^-8))
data8 0x94aa63c65e70d499 , 0x00003ffa //   log(1/frcpa(1+  9/2^-8))
data8 0xa54a696d4b62b382 , 0x00003ffa //   log(1/frcpa(1+ 10/2^-8))
//
data8 0xb3e4a796a5dac208 , 0x00003ffa //   log(1/frcpa(1+ 11/2^-8))
data8 0xc28c45b1878340a9 , 0x00003ffa //   log(1/frcpa(1+ 12/2^-8))
data8 0xd35c55f39d7a6235 , 0x00003ffa //   log(1/frcpa(1+ 13/2^-8))
data8 0xe220f037b954f1f5 , 0x00003ffa //   log(1/frcpa(1+ 14/2^-8))
data8 0xf0f3389b036834f3 , 0x00003ffa //   log(1/frcpa(1+ 15/2^-8))
//
data8 0xffd3488d5c980465 , 0x00003ffa //   log(1/frcpa(1+ 16/2^-8))
data8 0x87609ce2ed300490 , 0x00003ffb //   log(1/frcpa(1+ 17/2^-8))
data8 0x8ede9321e8c85927 , 0x00003ffb //   log(1/frcpa(1+ 18/2^-8))
data8 0x96639427f2f8e2f4 , 0x00003ffb //   log(1/frcpa(1+ 19/2^-8))
data8 0x9defad3e8f73217b , 0x00003ffb //   log(1/frcpa(1+ 20/2^-8))
//
data8 0xa582ebd50097029c , 0x00003ffb //   log(1/frcpa(1+ 21/2^-8))
data8 0xac06dbe75ab80fee , 0x00003ffb //   log(1/frcpa(1+ 22/2^-8))
data8 0xb3a78449b2d3ccca , 0x00003ffb //   log(1/frcpa(1+ 23/2^-8))
data8 0xbb4f79635ab46bb2 , 0x00003ffb //   log(1/frcpa(1+ 24/2^-8))
data8 0xc2fec93a83523f3f , 0x00003ffb //   log(1/frcpa(1+ 25/2^-8))
//
data8 0xc99af2eaca4c4571 , 0x00003ffb //   log(1/frcpa(1+ 26/2^-8))
data8 0xd1581106472fa653 , 0x00003ffb //   log(1/frcpa(1+ 27/2^-8))
data8 0xd8002560d4355f2e , 0x00003ffb //   log(1/frcpa(1+ 28/2^-8))
data8 0xdfcb43b4fe508632 , 0x00003ffb //   log(1/frcpa(1+ 29/2^-8))
data8 0xe67f6dff709d4119 , 0x00003ffb //   log(1/frcpa(1+ 30/2^-8))
//
data8 0xed393b1c22351280 , 0x00003ffb //   log(1/frcpa(1+ 31/2^-8))
data8 0xf5192bff087bcc35 , 0x00003ffb //   log(1/frcpa(1+ 32/2^-8))
data8 0xfbdf4ff6dfef2fa3 , 0x00003ffb //   log(1/frcpa(1+ 33/2^-8))
data8 0x81559a97f92f9cc7 , 0x00003ffc //   log(1/frcpa(1+ 34/2^-8))
data8 0x84be72bce90266e8 , 0x00003ffc //   log(1/frcpa(1+ 35/2^-8))
//
data8 0x88bc74113f23def2 , 0x00003ffc //   log(1/frcpa(1+ 36/2^-8))
data8 0x8c2ba3edf6799d11 , 0x00003ffc //   log(1/frcpa(1+ 37/2^-8))
data8 0x8f9dc92f92ea08b1 , 0x00003ffc //   log(1/frcpa(1+ 38/2^-8))
data8 0x9312e8f36efab5a7 , 0x00003ffc //   log(1/frcpa(1+ 39/2^-8))
data8 0x968b08643409ceb6 , 0x00003ffc //   log(1/frcpa(1+ 40/2^-8))
//
data8 0x9a062cba08a1708c , 0x00003ffc //   log(1/frcpa(1+ 41/2^-8))
data8 0x9d845b3abf95485c , 0x00003ffc //   log(1/frcpa(1+ 42/2^-8))
data8 0xa06fd841bc001bb4 , 0x00003ffc //   log(1/frcpa(1+ 43/2^-8))
data8 0xa3f3a74652fbe0db , 0x00003ffc //   log(1/frcpa(1+ 44/2^-8))
data8 0xa77a8fb2336f20f5 , 0x00003ffc //   log(1/frcpa(1+ 45/2^-8))
//
data8 0xab0497015d28b0a0 , 0x00003ffc //   log(1/frcpa(1+ 46/2^-8))
data8 0xae91c2be6ba6a615 , 0x00003ffc //   log(1/frcpa(1+ 47/2^-8))
data8 0xb189d1b99aebb20b , 0x00003ffc //   log(1/frcpa(1+ 48/2^-8))
data8 0xb51cced5de9c1b2c , 0x00003ffc //   log(1/frcpa(1+ 49/2^-8))
data8 0xb819bee9e720d42f , 0x00003ffc //   log(1/frcpa(1+ 50/2^-8))
//
data8 0xbbb2a0947b093a5d , 0x00003ffc //   log(1/frcpa(1+ 51/2^-8))
data8 0xbf4ec1505811684a , 0x00003ffc //   log(1/frcpa(1+ 52/2^-8))
data8 0xc2535bacfa8975ff , 0x00003ffc //   log(1/frcpa(1+ 53/2^-8))
data8 0xc55a3eafad187eb8 , 0x00003ffc //   log(1/frcpa(1+ 54/2^-8))
data8 0xc8ff2484b2c0da74 , 0x00003ffc //   log(1/frcpa(1+ 55/2^-8))
//
data8 0xcc0b1a008d53ab76 , 0x00003ffc //   log(1/frcpa(1+ 56/2^-8))
data8 0xcfb6203844b3209b , 0x00003ffc //   log(1/frcpa(1+ 57/2^-8))
data8 0xd2c73949a47a19f5 , 0x00003ffc //   log(1/frcpa(1+ 58/2^-8))
data8 0xd5daae18b49d6695 , 0x00003ffc //   log(1/frcpa(1+ 59/2^-8))
data8 0xd8f08248cf7e8019 , 0x00003ffc //   log(1/frcpa(1+ 60/2^-8))
//
data8 0xdca7749f1b3e540e , 0x00003ffc //   log(1/frcpa(1+ 61/2^-8))
data8 0xdfc28e033aaaf7c7 , 0x00003ffc //   log(1/frcpa(1+ 62/2^-8))
data8 0xe2e012a5f91d2f55 , 0x00003ffc //   log(1/frcpa(1+ 63/2^-8))
data8 0xe600064ed9e292a8 , 0x00003ffc //   log(1/frcpa(1+ 64/2^-8))
data8 0xe9226cce42b39f60 , 0x00003ffc //   log(1/frcpa(1+ 65/2^-8))
//
data8 0xec4749fd97a28360 , 0x00003ffc //   log(1/frcpa(1+ 66/2^-8))
data8 0xef6ea1bf57780495 , 0x00003ffc //   log(1/frcpa(1+ 67/2^-8))
data8 0xf29877ff38809091 , 0x00003ffc //   log(1/frcpa(1+ 68/2^-8))
data8 0xf5c4d0b245cb89be , 0x00003ffc //   log(1/frcpa(1+ 69/2^-8))
data8 0xf8f3afd6fcdef3aa , 0x00003ffc //   log(1/frcpa(1+ 70/2^-8))
//
data8 0xfc2519756be1abc7 , 0x00003ffc //   log(1/frcpa(1+ 71/2^-8))
data8 0xff59119f503e6832 , 0x00003ffc //   log(1/frcpa(1+ 72/2^-8))
data8 0x8147ce381ae0e146 , 0x00003ffd //   log(1/frcpa(1+ 73/2^-8))
data8 0x82e45f06cb1ad0f2 , 0x00003ffd //   log(1/frcpa(1+ 74/2^-8))
data8 0x842f5c7c573cbaa2 , 0x00003ffd //   log(1/frcpa(1+ 75/2^-8))
//
data8 0x85ce471968c8893a , 0x00003ffd //   log(1/frcpa(1+ 76/2^-8))
data8 0x876e8305bc04066d , 0x00003ffd //   log(1/frcpa(1+ 77/2^-8))
data8 0x891012678031fbb3 , 0x00003ffd //   log(1/frcpa(1+ 78/2^-8))
data8 0x8a5f1493d766a05f , 0x00003ffd //   log(1/frcpa(1+ 79/2^-8))
data8 0x8c030c778c56fa00 , 0x00003ffd //   log(1/frcpa(1+ 80/2^-8))
//
data8 0x8da85df17e31d9ae , 0x00003ffd //   log(1/frcpa(1+ 81/2^-8))
data8 0x8efa663e7921687e , 0x00003ffd //   log(1/frcpa(1+ 82/2^-8))
data8 0x90a22b6875c6a1f8 , 0x00003ffd //   log(1/frcpa(1+ 83/2^-8))
data8 0x91f62cc8f5d24837 , 0x00003ffd //   log(1/frcpa(1+ 84/2^-8))
data8 0x93a06cfc3857d980 , 0x00003ffd //   log(1/frcpa(1+ 85/2^-8))
//
data8 0x94f66d5e6fd01ced , 0x00003ffd //   log(1/frcpa(1+ 86/2^-8))
data8 0x96a330156e6772f2 , 0x00003ffd //   log(1/frcpa(1+ 87/2^-8))
data8 0x97fb3582754ea25b , 0x00003ffd //   log(1/frcpa(1+ 88/2^-8))
data8 0x99aa8259aad1bbf2 , 0x00003ffd //   log(1/frcpa(1+ 89/2^-8))
data8 0x9b0492f6227ae4a8 , 0x00003ffd //   log(1/frcpa(1+ 90/2^-8))
//
data8 0x9c5f8e199bf3a7a5 , 0x00003ffd //   log(1/frcpa(1+ 91/2^-8))
data8 0x9e1293b9998c1daa , 0x00003ffd //   log(1/frcpa(1+ 92/2^-8))
data8 0x9f6fa31e0b41f308 , 0x00003ffd //   log(1/frcpa(1+ 93/2^-8))
data8 0xa0cda11eaf46390e , 0x00003ffd //   log(1/frcpa(1+ 94/2^-8))
data8 0xa22c8f029cfa45aa , 0x00003ffd //   log(1/frcpa(1+ 95/2^-8))
//
data8 0xa3e48badb7856b34 , 0x00003ffd //   log(1/frcpa(1+ 96/2^-8))
data8 0xa5459a0aa95849f9 , 0x00003ffd //   log(1/frcpa(1+ 97/2^-8))
data8 0xa6a79c84480cfebd , 0x00003ffd //   log(1/frcpa(1+ 98/2^-8))
data8 0xa80a946d0fcb3eb2 , 0x00003ffd //   log(1/frcpa(1+ 99/2^-8))
data8 0xa96e831a3ea7b314 , 0x00003ffd //   log(1/frcpa(1+100/2^-8))
//
data8 0xaad369e3dc544e3b , 0x00003ffd //   log(1/frcpa(1+101/2^-8))
data8 0xac92e9588952c815 , 0x00003ffd //   log(1/frcpa(1+102/2^-8))
data8 0xadfa035aa1ed8fdc , 0x00003ffd //   log(1/frcpa(1+103/2^-8))
data8 0xaf6219eae1ad6e34 , 0x00003ffd //   log(1/frcpa(1+104/2^-8))
data8 0xb0cb2e6d8160f753 , 0x00003ffd //   log(1/frcpa(1+105/2^-8))
//
data8 0xb2354249ad950f72 , 0x00003ffd //   log(1/frcpa(1+106/2^-8))
data8 0xb3a056e98ef4a3b4 , 0x00003ffd //   log(1/frcpa(1+107/2^-8))
data8 0xb50c6dba52c6292a , 0x00003ffd //   log(1/frcpa(1+108/2^-8))
data8 0xb679882c33876165 , 0x00003ffd //   log(1/frcpa(1+109/2^-8))
data8 0xb78c07429785cedc , 0x00003ffd //   log(1/frcpa(1+110/2^-8))
//
data8 0xb8faeb8dc4a77d24 , 0x00003ffd //   log(1/frcpa(1+111/2^-8))
data8 0xba6ad77eb36ae0d6 , 0x00003ffd //   log(1/frcpa(1+112/2^-8))
data8 0xbbdbcc915e9bee50 , 0x00003ffd //   log(1/frcpa(1+113/2^-8))
data8 0xbd4dcc44f8cf12ef , 0x00003ffd //   log(1/frcpa(1+114/2^-8))
data8 0xbec0d81bf5b531fa , 0x00003ffd //   log(1/frcpa(1+115/2^-8))
//
data8 0xc034f19c139186f4 , 0x00003ffd //   log(1/frcpa(1+116/2^-8))
data8 0xc14cb69f7c5e55ab , 0x00003ffd //   log(1/frcpa(1+117/2^-8))
data8 0xc2c2abbb6e5fd56f , 0x00003ffd //   log(1/frcpa(1+118/2^-8))
data8 0xc439b2c193e6771e , 0x00003ffd //   log(1/frcpa(1+119/2^-8))
data8 0xc553acb9d5c67733 , 0x00003ffd //   log(1/frcpa(1+120/2^-8))
//
data8 0xc6cc96e441272441 , 0x00003ffd //   log(1/frcpa(1+121/2^-8))
data8 0xc8469753eca88c30 , 0x00003ffd //   log(1/frcpa(1+122/2^-8))
data8 0xc962cf3ce072b05c , 0x00003ffd //   log(1/frcpa(1+123/2^-8))
data8 0xcadeba8771f694aa , 0x00003ffd //   log(1/frcpa(1+124/2^-8))
data8 0xcc5bc08d1f72da94 , 0x00003ffd //   log(1/frcpa(1+125/2^-8))
//
data8 0xcd7a3f99ea035c29 , 0x00003ffd //   log(1/frcpa(1+126/2^-8))
data8 0xcef93860c8a53c35 , 0x00003ffd //   log(1/frcpa(1+127/2^-8))
data8 0xd0192f68a7ed23df , 0x00003ffd //   log(1/frcpa(1+128/2^-8))
data8 0xd19a201127d3c645 , 0x00003ffd //   log(1/frcpa(1+129/2^-8))
data8 0xd2bb92f4061c172c , 0x00003ffd //   log(1/frcpa(1+130/2^-8))
//
data8 0xd43e80b2ee8cc8fc , 0x00003ffd //   log(1/frcpa(1+131/2^-8))
data8 0xd56173601fc4ade4 , 0x00003ffd //   log(1/frcpa(1+132/2^-8))
data8 0xd6e6637efb54086f , 0x00003ffd //   log(1/frcpa(1+133/2^-8))
data8 0xd80ad9f58f3c8193 , 0x00003ffd //   log(1/frcpa(1+134/2^-8))
data8 0xd991d1d31aca41f8 , 0x00003ffd //   log(1/frcpa(1+135/2^-8))
//
data8 0xdab7d02231484a93 , 0x00003ffd //   log(1/frcpa(1+136/2^-8))
data8 0xdc40d532cde49a54 , 0x00003ffd //   log(1/frcpa(1+137/2^-8))
data8 0xdd685f79ed8b265e , 0x00003ffd //   log(1/frcpa(1+138/2^-8))
data8 0xde9094bbc0e17b1d , 0x00003ffd //   log(1/frcpa(1+139/2^-8))
data8 0xe01c91b78440c425 , 0x00003ffd //   log(1/frcpa(1+140/2^-8))
//
data8 0xe14658f26997e729 , 0x00003ffd //   log(1/frcpa(1+141/2^-8))
data8 0xe270cdc2391e0d23 , 0x00003ffd //   log(1/frcpa(1+142/2^-8))
data8 0xe3ffce3a2aa64922 , 0x00003ffd //   log(1/frcpa(1+143/2^-8))
data8 0xe52bdb274ed82887 , 0x00003ffd //   log(1/frcpa(1+144/2^-8))
data8 0xe6589852e75d7df6 , 0x00003ffd //   log(1/frcpa(1+145/2^-8))
//
data8 0xe786068c79937a7d , 0x00003ffd //   log(1/frcpa(1+146/2^-8))
data8 0xe91903adad100911 , 0x00003ffd //   log(1/frcpa(1+147/2^-8))
data8 0xea481236f7d35bb0 , 0x00003ffd //   log(1/frcpa(1+148/2^-8))
data8 0xeb77d48c692e6b14 , 0x00003ffd //   log(1/frcpa(1+149/2^-8))
data8 0xeca84b83d7297b87 , 0x00003ffd //   log(1/frcpa(1+150/2^-8))
//
data8 0xedd977f4962aa158 , 0x00003ffd //   log(1/frcpa(1+151/2^-8))
data8 0xef7179a22f257754 , 0x00003ffd //   log(1/frcpa(1+152/2^-8))
data8 0xf0a450d139366ca7 , 0x00003ffd //   log(1/frcpa(1+153/2^-8))
data8 0xf1d7e0524ff9ffdb , 0x00003ffd //   log(1/frcpa(1+154/2^-8))
data8 0xf30c29036a8b6cae , 0x00003ffd //   log(1/frcpa(1+155/2^-8))
//
data8 0xf4412bc411ea8d92 , 0x00003ffd //   log(1/frcpa(1+156/2^-8))
data8 0xf576e97564c8619d , 0x00003ffd //   log(1/frcpa(1+157/2^-8))
data8 0xf6ad62fa1b5f172f , 0x00003ffd //   log(1/frcpa(1+158/2^-8))
data8 0xf7e499368b55c542 , 0x00003ffd //   log(1/frcpa(1+159/2^-8))
data8 0xf91c8d10abaffe22 , 0x00003ffd //   log(1/frcpa(1+160/2^-8))
//
data8 0xfa553f7018c966f3 , 0x00003ffd //   log(1/frcpa(1+161/2^-8))
data8 0xfb8eb13e185d802c , 0x00003ffd //   log(1/frcpa(1+162/2^-8))
data8 0xfcc8e3659d9bcbed , 0x00003ffd //   log(1/frcpa(1+163/2^-8))
data8 0xfe03d6d34d487fd2 , 0x00003ffd //   log(1/frcpa(1+164/2^-8))
data8 0xff3f8c7581e9f0ae , 0x00003ffd //   log(1/frcpa(1+165/2^-8))
//
data8 0x803e029e280173ae , 0x00003ffe //   log(1/frcpa(1+166/2^-8))
data8 0x80dca10cc52d0757 , 0x00003ffe //   log(1/frcpa(1+167/2^-8))
data8 0x817ba200632755a1 , 0x00003ffe //   log(1/frcpa(1+168/2^-8))
data8 0x821b05f3b01d6774 , 0x00003ffe //   log(1/frcpa(1+169/2^-8))
data8 0x82bacd623ff19d06 , 0x00003ffe //   log(1/frcpa(1+170/2^-8))
//
data8 0x835af8c88e7a8f47 , 0x00003ffe //   log(1/frcpa(1+171/2^-8))
data8 0x83c5f8299e2b4091 , 0x00003ffe //   log(1/frcpa(1+172/2^-8))
data8 0x8466cb43f3d87300 , 0x00003ffe //   log(1/frcpa(1+173/2^-8))
data8 0x850803a67c80ca4b , 0x00003ffe //   log(1/frcpa(1+174/2^-8))
data8 0x85a9a1d11a23b461 , 0x00003ffe //   log(1/frcpa(1+175/2^-8))
//
data8 0x864ba644a18e6e05 , 0x00003ffe //   log(1/frcpa(1+176/2^-8))
data8 0x86ee1182dcc432f7 , 0x00003ffe //   log(1/frcpa(1+177/2^-8))
data8 0x875a925d7e48c316 , 0x00003ffe //   log(1/frcpa(1+178/2^-8))
data8 0x87fdaa109d23aef7 , 0x00003ffe //   log(1/frcpa(1+179/2^-8))
data8 0x88a129ed4becfaf2 , 0x00003ffe //   log(1/frcpa(1+180/2^-8))
//
data8 0x89451278ecd7f9cf , 0x00003ffe //   log(1/frcpa(1+181/2^-8))
data8 0x89b29295f8432617 , 0x00003ffe //   log(1/frcpa(1+182/2^-8))
data8 0x8a572ac5a5496882 , 0x00003ffe //   log(1/frcpa(1+183/2^-8))
data8 0x8afc2d0ce3b2dadf , 0x00003ffe //   log(1/frcpa(1+184/2^-8))
data8 0x8b6a69c608cfd3af , 0x00003ffe //   log(1/frcpa(1+185/2^-8))
//
data8 0x8c101e106e899a83 , 0x00003ffe //   log(1/frcpa(1+186/2^-8))
data8 0x8cb63de258f9d626 , 0x00003ffe //   log(1/frcpa(1+187/2^-8))
data8 0x8d2539c5bd19e2b1 , 0x00003ffe //   log(1/frcpa(1+188/2^-8))
data8 0x8dcc0e064b29e6f1 , 0x00003ffe //   log(1/frcpa(1+189/2^-8))
data8 0x8e734f45d88357ae , 0x00003ffe //   log(1/frcpa(1+190/2^-8))
//
data8 0x8ee30cef034a20db , 0x00003ffe //   log(1/frcpa(1+191/2^-8))
data8 0x8f8b0515686d1d06 , 0x00003ffe //   log(1/frcpa(1+192/2^-8))
data8 0x90336bba039bf32f , 0x00003ffe //   log(1/frcpa(1+193/2^-8))
data8 0x90a3edd23d1c9d58 , 0x00003ffe //   log(1/frcpa(1+194/2^-8))
data8 0x914d0de2f5d61b32 , 0x00003ffe //   log(1/frcpa(1+195/2^-8))
//
data8 0x91be0c20d28173b5 , 0x00003ffe //   log(1/frcpa(1+196/2^-8))
data8 0x9267e737c06cd34a , 0x00003ffe //   log(1/frcpa(1+197/2^-8))
data8 0x92d962ae6abb1237 , 0x00003ffe //   log(1/frcpa(1+198/2^-8))
data8 0x9383fa6afbe2074c , 0x00003ffe //   log(1/frcpa(1+199/2^-8))
data8 0x942f0421651c1c4e , 0x00003ffe //   log(1/frcpa(1+200/2^-8))
//
data8 0x94a14a3845bb985e , 0x00003ffe //   log(1/frcpa(1+201/2^-8))
data8 0x954d133857f861e7 , 0x00003ffe //   log(1/frcpa(1+202/2^-8))
data8 0x95bfd96468e604c4 , 0x00003ffe //   log(1/frcpa(1+203/2^-8))
data8 0x9632d31cafafa858 , 0x00003ffe //   log(1/frcpa(1+204/2^-8))
data8 0x96dfaabd86fa1647 , 0x00003ffe //   log(1/frcpa(1+205/2^-8))
//
data8 0x9753261fcbb2a594 , 0x00003ffe //   log(1/frcpa(1+206/2^-8))
data8 0x9800c11b426b996d , 0x00003ffe //   log(1/frcpa(1+207/2^-8))
data8 0x9874bf4d45ae663c , 0x00003ffe //   log(1/frcpa(1+208/2^-8))
data8 0x99231f5ee9a74f79 , 0x00003ffe //   log(1/frcpa(1+209/2^-8))
data8 0x9997a18a56bcad28 , 0x00003ffe //   log(1/frcpa(1+210/2^-8))
//
data8 0x9a46c873a3267e79 , 0x00003ffe //   log(1/frcpa(1+211/2^-8))
data8 0x9abbcfc621eb6cb6 , 0x00003ffe //   log(1/frcpa(1+212/2^-8))
data8 0x9b310cb0d354c990 , 0x00003ffe //   log(1/frcpa(1+213/2^-8))
data8 0x9be14cf9e1b3515c , 0x00003ffe //   log(1/frcpa(1+214/2^-8))
data8 0x9c5710b8cbb73a43 , 0x00003ffe //   log(1/frcpa(1+215/2^-8))
//
data8 0x9ccd0abd301f399c , 0x00003ffe //   log(1/frcpa(1+216/2^-8))
data8 0x9d7e67f3bdce8888 , 0x00003ffe //   log(1/frcpa(1+217/2^-8))
data8 0x9df4ea81a99daa01 , 0x00003ffe //   log(1/frcpa(1+218/2^-8))
data8 0x9e6ba405a54514ba , 0x00003ffe //   log(1/frcpa(1+219/2^-8))
data8 0x9f1e21c8c7bb62b3 , 0x00003ffe //   log(1/frcpa(1+220/2^-8))
//
data8 0x9f956593f6b6355c , 0x00003ffe //   log(1/frcpa(1+221/2^-8))
data8 0xa00ce1092e5498c3 , 0x00003ffe //   log(1/frcpa(1+222/2^-8))
data8 0xa0c08309c4b912c1 , 0x00003ffe //   log(1/frcpa(1+223/2^-8))
data8 0xa1388a8c6faa2afa , 0x00003ffe //   log(1/frcpa(1+224/2^-8))
data8 0xa1b0ca7095b5f985 , 0x00003ffe //   log(1/frcpa(1+225/2^-8))
//
data8 0xa22942eb47534a00 , 0x00003ffe //   log(1/frcpa(1+226/2^-8))
data8 0xa2de62326449d0a3 , 0x00003ffe //   log(1/frcpa(1+227/2^-8))
data8 0xa357690f88bfe345 , 0x00003ffe //   log(1/frcpa(1+228/2^-8))
data8 0xa3d0a93f45169a4b , 0x00003ffe //   log(1/frcpa(1+229/2^-8))
data8 0xa44a22f7ffe65f30 , 0x00003ffe //   log(1/frcpa(1+230/2^-8))
//
data8 0xa500c5e5b4c1aa36 , 0x00003ffe //   log(1/frcpa(1+231/2^-8))
data8 0xa57ad064eb2ebbc2 , 0x00003ffe //   log(1/frcpa(1+232/2^-8))
data8 0xa5f5152dedf4384e , 0x00003ffe //   log(1/frcpa(1+233/2^-8))
data8 0xa66f9478856233ec , 0x00003ffe //   log(1/frcpa(1+234/2^-8))
data8 0xa6ea4e7cca02c32e , 0x00003ffe //   log(1/frcpa(1+235/2^-8))
//
data8 0xa765437325341ccf , 0x00003ffe //   log(1/frcpa(1+236/2^-8))
data8 0xa81e21e6c75b4020 , 0x00003ffe //   log(1/frcpa(1+237/2^-8))
data8 0xa899ab333fe2b9ca , 0x00003ffe //   log(1/frcpa(1+238/2^-8))
data8 0xa9157039c51ebe71 , 0x00003ffe //   log(1/frcpa(1+239/2^-8))
data8 0xa991713433c2b999 , 0x00003ffe //   log(1/frcpa(1+240/2^-8))
//
data8 0xaa0dae5cbcc048b3 , 0x00003ffe //   log(1/frcpa(1+241/2^-8))
data8 0xaa8a27ede5eb13ad , 0x00003ffe //   log(1/frcpa(1+242/2^-8))
data8 0xab06de228a9e3499 , 0x00003ffe //   log(1/frcpa(1+243/2^-8))
data8 0xab83d135dc633301 , 0x00003ffe //   log(1/frcpa(1+244/2^-8))
data8 0xac3fb076adc7fe7a , 0x00003ffe //   log(1/frcpa(1+245/2^-8))
//
data8 0xacbd3cbbe47988f1 , 0x00003ffe //   log(1/frcpa(1+246/2^-8))
data8 0xad3b06b1a5dc57c3 , 0x00003ffe //   log(1/frcpa(1+247/2^-8))
data8 0xadb90e94af887717 , 0x00003ffe //   log(1/frcpa(1+248/2^-8))
data8 0xae3754a218f7c816 , 0x00003ffe //   log(1/frcpa(1+249/2^-8))
data8 0xaeb5d9175437afa2 , 0x00003ffe //   log(1/frcpa(1+250/2^-8))
//
data8 0xaf349c322e9c7cee , 0x00003ffe //   log(1/frcpa(1+251/2^-8))
data8 0xafb39e30d1768d1c , 0x00003ffe //   log(1/frcpa(1+252/2^-8))
data8 0xb032df51c2c93116 , 0x00003ffe //   log(1/frcpa(1+253/2^-8))
data8 0xb0b25fd3e6035ad9 , 0x00003ffe //   log(1/frcpa(1+254/2^-8))
data8 0xb1321ff67cba178c , 0x00003ffe //   log(1/frcpa(1+255/2^-8))
LOCAL_OBJECT_END(log_table_3)


.section .text
GLOBAL_LIBM_ENTRY(asinh)

{ .mfi
      getf.exp   asinh_GR_f8 = f8        // Must recompute later if x unorm
      fclass.m   p12,p0 = f8, 0x0b       // Test x unorm
      mov        log_GR_exp_17_ones = 0x1ffff
}
{ .mfi
      addl       NR_table_address = @ltoff(log_table_1), gp
      fma.s1     log_y = f8, f8, f1      // y = x^2 + 1
      mov        asinh_GR_comp = 0xfffc
}
;;

{ .mfi
      mov        log_GR_exp_16_ones = 0xffff //BIAS
      fclass.m   p6,p0 = f8, 0xe7        // Test for x = NaN and inf and zero
      mov        log_GR_comp2 = 0x1003e
}
{ .mfi
      ld8        NR_table_address = [NR_table_address]
      fma.s1     asinh_w_sq = f8,f8,f0   // x^2
      nop.i      0
}
;;

{ .mfi
      nop.m      0
      fcmp.lt.s1 p7,p11 = f8,f0          // if x<0
      nop.i      0
}
{ .mfb
      nop.m      0
      fnorm.s1   fNormX = f8             // Normalize x
(p12) br.cond.spnt ASINH_UNORM           // Branch if x=unorm
}
;;

ASINH_COMMON:
// Return here if x=unorm and not denorm
{ .mfi
      //to get second table address
      adds       log_table_address2 = 0x40, NR_table_address
      fma.s1     log_arg = f8,f1,f8
      nop.i      0
}
{ .mfb
      nop.m      0
(p6)  fma.d.s0   f8 = f8,f1,f8           // quietize nan result if x=nan
(p6)  br.ret.spnt b0                     // Exit for x=nan and inf and zero
}
;;

{ .mfi
      ldfpd      NR1,NR2 = [log_table_address2],16
      frsqrta.s1 log_y_rs,p0 = log_y     // z=1/sqrt(y)
      nop.i      0
}
;;

{ .mfi
      ldfe       log_C13 = [log_table_address2],16
      nop.f      0
      and        asinh_GR_f8 = asinh_GR_f8,log_GR_exp_17_ones
}
;;

{ .mib
      ldfe       log_C11 = [log_table_address2],16
      cmp.le     p13,p0 = log_GR_comp2,asinh_GR_f8
(p13) br.cond.spnt LOG_COMMON1           // Branch if path 4, |x| >= 2^63
}
;;

{ .mfi
      nop.m      0
      fma.s1     log_y_rs_iter = log_y_rs,log_y,f0  // y*z
      nop.i      0
}
;;

.pred.rel "mutex",p7,p11
{ .mfi
      nop.m      0
(p11) mov        asinh_f8 = fNormX
      nop.i      0
}
{ .mfb
      cmp.gt     p8,p0 = asinh_GR_comp,asinh_GR_f8
(p7)  fnma.s1    asinh_f8 = fNormX,f1,f0
(p8)  br.cond.spnt ASINH_NEAR_ZERO       // Branch if path 2, 0 < |x| < 2^-3
}
;;

// Here if main path, 2^-3 <= |x| < 2^63
///////////////////////////////// The first iteration /////////////////////////
{ .mfi
      ldfpd      log_P5,log_P4 = [NR_table_address],16
      fnma.s1    log_y_rs_iter = log_y_rs_iter,log_y_rs,NR2     // 3-(y*z)*z
      nop.i      0
}
{ .mfi
      nop.m      0
      fma.s1     log_y_rs_iter1 = log_y_rs,NR1,f0               // 0.5*z
      nop.i      0
}
;;

{ .mfi
      ldfpd      log_P3,log_P2 = [NR_table_address],16
      // (0.5*z)*(3-(y*z)*z)
      fma.s1     log_y_rs_iter = log_y_rs_iter1,log_y_rs_iter,f0
      nop.i      0
}
;;

/////////////////////////// The second iteration /////////////////////////////
{ .mfi
      ldfd       log_P1 = [NR_table_address],16
      fma.s1     log_y_rs = log_y_rs_iter,log_y,f0
      nop.i      0
}
;;

{ .mfi
      nop.m      0
      fnma.s1    log_y_rs = log_y_rs,log_y_rs_iter,NR2
      nop.i      0
}
{ .mfi
      nop.m      0
      fma.s1     log_y_rs_iter1 = log_y_rs_iter,NR1,f0
      nop.i      0
}
;;

{ .mfi
      ldfe       log2 = [NR_table_address],16
      // (0.5*z)*(3-(y*z)*z)
      fma.s1     log_y_rs_iter = log_y_rs_iter1,log_y_rs,f0
      nop.i      0
}
{ .mfi
      nop.m      0
      // (0.5*z)*(3-(y*z)*z)
      fma.s1     log_arg_early = log_y_rs_iter1,log_y_rs,f0
      nop.i      0
}
;;

////////////////////////////////// The third iteration ////////////////////////
{ .mfi
      nop.m      0
      fma.s1     log_y_rs = log_y_rs_iter,log_y,f0
      nop.i      0
}
{ .mfi
      nop.m      0
      fma.s1     log_y_rs_iter1 = log_y_rs_iter,NR1,f0
      nop.i      0
}
;;

{ .mfi
      nop.m      0
      fma.s1     log_arg_early = log_arg_early,log_y,asinh_f8
      nop.i      0
}
;;

{ .mfi
      nop.m      0
      fnma.s1    log_y_rs = log_y_rs,log_y_rs_iter,NR2
      nop.i      0
}
{ .mfi
      nop.m      0
      fma.s1     log_y_rs_iter1 = log_y_rs_iter1,log_y,f0
      nop.i      0
}
;;

{ .mfi
      nop.m      0
      frcpa.s1   log_C,p0 = f1,log_arg_early
      nop.i      0
}
;;

{ .mfi
      getf.exp   log_GR_signexp_f8 = log_arg_early
      nop.f      0
      nop.i      0
}
;;

{ .mfi
      getf.sig   log_GR_significand_f8 = log_arg_early
      // (0.5*z)*(3-(y*z)*z)*y + |x|
      fma.s1     log_arg = log_y_rs_iter1,log_y_rs,asinh_f8
      //to get third table address
      adds       log_table_address3 = 0x70, NR_table_address
}
;;

///////////////////////////////// The end NR iterations /////////////////////
{ .mfi
      nop.m      0
      nop.f      0
      //significant bit destruction
      and        log_GR_exp_f8 = log_GR_signexp_f8, log_GR_exp_17_ones
}
;;

{ .mfi
      //BIAS subtraction
      sub        log_GR_true_exp_f8 = log_GR_exp_f8, log_GR_exp_16_ones
(p7)  fnma.s1    log2 = log2,f1,f0
      nop.i      0
}
;;

{ .mfi
      setf.sig   log_int_Nfloat = log_GR_true_exp_f8
      fms.s1     log_r = log_C,log_arg,f1  // C = frcpa(x); r = C * x - 1
      extr.u     log_GR_index = log_GR_significand_f8,55,8 //Extract 8 bits
}
;;

{ .mmi
      //pre-index*16 + index
      shladd     log_table_address3 = log_GR_index,4,log_table_address3
;;
      ldfe       log_T = [log_table_address3]
      nop.i      0
}
;;

{ .mfi
      nop.m      0
      fma.s1     log_rsq = log_r, log_r, f0          //r^2
      nop.i      0
}
{ .mfi
      nop.m      0
      fma.s1     log_rp_p4 = log_P5, log_r, log_P4   //P5*r + P4
      nop.i      0
}
;;

{ .mfi
      nop.m      0
      fma.s1     log_rp_p32 = log_P3, log_r, log_P2  //P3*r + P2
      nop.i      0
}
;;

{ .mfi
      nop.m      0
      //convert N to the floating-point format
      fcvt.xf    log_Nfloat = log_int_Nfloat
      nop.i      0
}
;;

{ .mfi
      nop.m      0
      fma.s1     log_rcube = log_rsq, log_r, f0      //r^3
      nop.i      0
}
{ .mfi
      nop.m      0
      fma.s1     log_rp_p10 = log_rsq, log_P1, log_r //P1*r^2 + r
      nop.i      0
}
;;

{ .mfi
      nop.m      0
      //(P5*r + P4)*r^2 + P3*r + P2
      fma.s1     log_rp_p2 = log_rp_p4, log_rsq, log_rp_p32
      nop.i      0
}
;;

.pred.rel "mutex",p7,p11
{ .mfi
      nop.m      0
(p11) fma.s1     log_T_plus_Nlog2 = log_Nfloat,log2,log_T  //N*log2 + T if x>0
      nop.i      0
}
{ .mfi
      nop.m      0
(p7)  fms.s1     log_T_plus_Nlog2 = log_Nfloat,log2,log_T  //N*log2 - T if x<0
      nop.i      0
}
;;

{ .mfi
      nop.m      0
      //((P5*r + P4)*r^2 + P3*r + P2)*w^3 + P1*r^2 + r
      fma.s1     log_r2P_r = log_rp_p2, log_rcube, log_rp_p10
      nop.i      0
}
;;

{ .mfi
      nop.m      0
      //  N*log2 + T + ((P5*r + P4)*r^2 + P3*r + P2)*r^3 + P1*r^2 + r
(p11) fadd.d.s0  f8 = log_T_plus_Nlog2,log_r2P_r
      nop.i      0
}
{ .mfb
      nop.m      0
      // -N*log2 - T - ((P5*r + P4)*r^2 + P3*r + P2)*r^3 + P1*r^2 + r
(p7)  fsub.d.s0  f8 = log_T_plus_Nlog2,log_r2P_r
      br.ret.sptk b0           // Exit main path, path 3: 2^-3 <= |x| < 2^63
}
;;

// Here if path 4, |x| >= 2^63
LOG_COMMON1:
{ .mfi
      ldfpd      log_P5,log_P4 = [NR_table_address],16
      nop.f      0
      nop.i      0
}
;;

{ .mfi
      ldfpd      log_P3,log_P2 = [NR_table_address],16
      frcpa.s1   log_C,p0 = f1,log_arg
      nop.i      0
}
;;

{ .mmi
      getf.exp   log_GR_signexp_f8 = log_arg
      ldfd       log_P1 = [NR_table_address],16
      nop.i      0
}
;;

{ .mmi
      getf.sig   log_GR_significand_f8 = log_arg
      ldfe       log2 = [NR_table_address],16
      nop.i      0
}
;;

{ .mfi
      adds       log_table_address3 = 0x70, NR_table_address
      nop.f      0
      //significant bit destruction
      and        log_GR_exp_f8 = log_GR_signexp_f8, log_GR_exp_17_ones
}
;;

{ .mmf
      nop.m      0
      //BIAS subtraction
      sub        log_GR_true_exp_f8 = log_GR_exp_f8, log_GR_exp_16_ones
      fms.s1     log_r = log_C,log_arg,f1  //C = frcpa(x); r = C * x - 1
}
;;

{ .mfi
      setf.sig   log_int_Nfloat = log_GR_true_exp_f8
      nop.f      0
      extr.u     log_GR_index = log_GR_significand_f8,55,8 //Extract 8 bits
}
;;

{ .mmi
      //pre-index*16 + index
      shladd     log_table_address3 = log_GR_index,4,log_table_address3
;;
      ldfe       log_T = [log_table_address3]
      nop.i      0

}
;;

{ .mfi
      nop.m      0
      fma.s1     log_rsq = log_r, log_r, f0          //r^2
      nop.i      0
}
{ .mfi
      nop.m      0
      fma.s1     log_rp_p4 = log_P5, log_r, log_P4   //P5*r + P4
      nop.i      0
}
;;

{ .mfi
      nop.m      0
      fma.s1     log_rp_p32 = log_P3, log_r, log_P2  //P3*r + P2
      nop.i      0
}
{ .mfi
      nop.m      0
(p7)  fnma.s1    log2 = log2,f1,f0
      nop.i      0
}
;;

{ .mfi
      nop.m      0
      fma.s1     log_rcube = log_rsq, log_r, f0      //r^3
      nop.i      0
}
{ .mfi
      nop.m      0
      fma.s1     log_rp_p10 = log_rsq, log_P1, log_r //P1*r^2 + r
      nop.i      0
}
;;

{ .mfi
      nop.m      0
      //convert N to the floating-point format
      fcvt.xf    log_Nfloat = log_int_Nfloat
      nop.i      0
}
{ .mfi
      nop.m      0
      //(P5*r + P4)*r^2 + P3*r + P2
      fma.s1     log_rp_p2 = log_rp_p4, log_rsq, log_rp_p32
      nop.i      0
}
;;

{ .mfi
      nop.m      0
(p7)  fnma.s1    log_T = log_T,f1,f0
      nop.i      0
}
;;

{ .mfi
      nop.m      0
      fma.s1     log_T_plus_Nlog2 = log_Nfloat,log2,log_T    //N*log2 + T
      nop.i      0
}
{ .mfi
      nop.m      0
      //((P5*r + P4)*r^2 + P3*r + P2)*w^3 + P1*r^2 + r
      fma.s1     log_r2P_r = log_rp_p2, log_rcube, log_rp_p10
      nop.i      0
}
;;

.pred.rel "mutex",p7,p11
{ .mfi
      nop.m      0
      //  N*log2 + T + ((P5*r + P4)*r^2 + P3*r + P2)*r^3 + P1*r^2 + r
(p11) fadd.d.s0  f8 = log_T_plus_Nlog2,log_r2P_r
      nop.i      0
}
{ .mfb
      nop.m      0
      // -N*log2 - T - ((P5*r + P4)*r^2 + P3*r + P2)*r^3 + P1*r^2 + r
(p7)  fsub.d.s0  f8 = log_T_plus_Nlog2,log_r2P_r
      br.ret.sptk b0              // Exit path 4, |x| >= 2^63
}
;;

// Here is path 2, 0 < |x| < 2^-3
ASINH_NEAR_ZERO:
{ .mfi
      ldfe       log_C9 = [log_table_address2],16
      fma.s1     asinh_w_cube = asinh_w_sq,fNormX,f0
      nop.i      0
}
;;

{ .mfi
      ldfe       log_C7 = [log_table_address2],16
      fma.s1     asinh_w_four = asinh_w_sq,asinh_w_sq,f0
      nop.i      0
}
;;

{ .mfi
      ldfe       log_C5 = [log_table_address2],16
      nop.f      0
      nop.i      0
}
;;

{ .mfi
      ldfe       log_C3 = [log_table_address2],16
      nop.f      0
      nop.i      0
}
;;

{ .mfi
      nop.m      0
      fma.s1     asinh_w_13 = log_C13,asinh_w_sq,log_C11
      nop.i      0
}
{ .mfi
      nop.m      0
      fma.s1     asinh_w_9 = log_C9,asinh_w_sq,log_C7
      nop.i      0
}
;;

{ .mfi
      nop.m      0
      fma.s1     asinh_w_3 = log_C5,asinh_w_sq,log_C3
      nop.i      0
}
{ .mfi
      nop.m      0
      fma.s1     asinh_w_seven = asinh_w_four,asinh_w_cube,f0
      nop.i      0
}
;;

{ .mfi
      nop.m      0
      fma.s1     asinh_w_7 = asinh_w_13,asinh_w_four,asinh_w_9
      nop.i      0
}
{ .mfi
      nop.m      0
      fma.s1     asinh_w_5 = asinh_w_3,asinh_w_cube,fNormX
      nop.i      0
}
;;

{ .mfb
      nop.m      0
      fma.d.s0   f8 = asinh_w_7,asinh_w_seven,asinh_w_5
      br.ret.sptk b0                   // Exit path 2 (0.0 <|x| < 2^(-3))
}
;;

ASINH_UNORM:
// Here if x=unorm
{ .mfi
      getf.exp   asinh_GR_f8 = fNormX  // Recompute if x unorm
      fclass.m   p0,p13 = fNormX, 0x0b // Test x denorm
      nop.i      0
}
;;

{ .mfb
      nop.m      0
      fcmp.eq.s0 p14,p0 = f8, f0       // Dummy to set denormal flag
(p13) br.cond.sptk ASINH_COMMON        // Continue if x unorm and not denorm
}
;;

.pred.rel "mutex",p7,p11
{ .mfi
      nop.m      0
(p7)  fma.d.s0   f8 = f8,f8,f8         // Result x+x^2 if x=-denorm
      nop.i      0
}
{ .mfb
      nop.m      0
(p11) fnma.d.s0  f8 = f8,f8,f8         // Result x-x^2 if x=+denorm
      br.ret.spnt b0                   // Exit if denorm
}
;;

GLOBAL_LIBM_END(asinh)