1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
|
/* file: libm_support.h */
/*
// Copyright (c) 2000 - 2004, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History: 02/02/2000 Initial version
// 2/28/2000 added tags for logb and nextafter
// 3/22/2000 Changes to support _LIB_VERSIONIMF variable
// and filled some enum gaps. Added support for C99.
// 5/31/2000 added prototypes for __libm_frexp_4l/8l
// 8/10/2000 Changed declaration of _LIB_VERSIONIMF to work for library
// builds and other application builds (precompiler directives).
// 8/11/2000 Added pointers-to-matherr-functions declarations to allow
// for user-defined matherr functions in the dll build.
// 12/07/2000 Added scalbn error_types values.
// 5/01/2001 Added error_types values for C99 nearest integer
// functions.
// 6/07/2001 Added error_types values for fdim.
// 6/18/2001 Added include of complex_support.h.
// 8/03/2001 Added error_types values for nexttoward, scalbln.
// 8/23/2001 Corrected tag numbers from 186 and higher.
// 8/27/2001 Added check for long int and long long int definitions.
// 12/10/2001 Added error_types for erfc.
// 12/27/2001 Added error_types for degree argument functions.
// 01/02/2002 Added error_types for tand, cotd.
// 01/04/2002 Delete include of complex_support.h
// 01/23/2002 Deleted prototypes for __libm_frexp*. Added check for
// multiple int, long int, and long long int definitions.
// 05/20/2002 Added error_types for cot.
// 06/27/2002 Added error_types for sinhcosh.
// 12/05/2002 Added error_types for annuity and compound
// 04/10/2003 Added error_types for tgammal/tgamma/tgammaf
// 05/16/2003 FP-treatment macros copied here from IA32 libm_support.h
// 06/02/2003 Added pad into struct fp80 (12/16 bytes).
// 08/01/2003 Added struct ker80 and macros for multiprecision addition,
// subtraction, multiplication, division, square root.
// 08/07/2003 History section updated.
// 09/03/2003 ALIGN(n) macro added.
// 10/01/2003 LDOUBLE_ALIGN and fp80 corrected on linux to 16 bytes.
// 11/24/2004 Added ifdef around definitions of INT32/64
// 12/15/2004 Added error_types for exp10, nextafter, nexttoward
// underflow. Moved error codes into libm_error_codes.h.
//
*/
#ifndef __LIBM_SUPPORT_H_INCLUDED__
#define __LIBM_SUPPORT_H_INCLUDED__
#include <math-svid-compat.h>
#ifndef _LIBC
#if !(defined(_WIN32) || defined(_WIN64))
# pragma const_seg(".rodata") /* place constant data in text (code) section */
#endif
#if defined(__ICC) || defined(__ICL) || defined(__ECC) || defined(__ECL)
# pragma warning( disable : 1682 ) /* #1682: ixplicit conversion of a 64-bit integral type to a smaller integral type (potential portability problem) */
# pragma warning( disable : 1683 ) /* #1683: explicit conversion of a 64-bit integral type to a smaller integral type (potential portability problem) */
#endif
#endif
/* macros to form a double value in hex representation (unsigned int type) */
#define DOUBLE_HEX(hi,lo) 0x##lo,0x##hi /*LITTLE_ENDIAN*/
#include "libm_cpu_defs.h"
#if !(defined (IA64))
# include "libm_dll.h"
# include "libm_dispatch.h"
#endif
#include "libm_error_codes.h"
struct exceptionf
{
int type;
char *name;
float arg1, arg2, retval;
};
# ifdef __cplusplus
struct __exception
{
int type;
char *name;
double arg1, arg2, retval;
};
# else
# ifndef _LIBC
struct exception
{
int type;
char *name;
double arg1, arg2, retval;
};
# endif
# endif
struct exceptionl
{
int type;
char *name;
long double arg1, arg2, retval;
};
#if (defined (_MS_) && defined (IA64))
#define MATHERR_F _matherrf
#define MATHERR_D _matherr
#else
#define MATHERR_F matherrf
#define MATHERR_D matherr
#endif
# ifdef __cplusplus
#define EXC_DECL_D __exception
#else
// exception is a reserved name in C++
#define EXC_DECL_D exception
#endif
extern int MATHERR_F(struct exceptionf*);
extern int matherrl(struct exceptionl*);
/* memory format definitions (LITTLE_ENDIAN only) */
#if !(defined(SIZE_INT_32) || defined(SIZE_INT_64))
# error "You need to define SIZE_INT_32 or SIZE_INT_64"
#endif
#if (defined(SIZE_INT_32) && defined(SIZE_INT_64))
#error multiple integer size definitions; define SIZE_INT_32 or SIZE_INT_64
#endif
#if !(defined(SIZE_LONG_32) || defined(SIZE_LONG_64))
# error "You need to define SIZE_LONG_32 or SIZE_LONG_64"
#endif
#if (defined(SIZE_LONG_32) && defined(SIZE_LONG_64))
#error multiple integer size definitions; define SIZE_LONG_32 or SIZE_LONG_64
#endif
#if !defined(__USE_EXTERNAL_FPMEMTYP_H__)
#define BIAS_32 0x007F
#define BIAS_64 0x03FF
#define BIAS_80 0x3FFF
#define MAXEXP_32 0x00FE
#define MAXEXP_64 0x07FE
#define MAXEXP_80 0x7FFE
#define EXPINF_32 0x00FF
#define EXPINF_64 0x07FF
#define EXPINF_80 0x7FFF
struct fp32 { /*// sign:1 exponent:8 significand:23 (implied leading 1)*/
#if defined(SIZE_INT_32)
unsigned significand:23;
unsigned exponent:8;
unsigned sign:1;
#elif defined(SIZE_INT_64)
unsigned significand:23;
unsigned exponent:8;
unsigned sign:1;
#endif
};
struct fp64 { /*/ sign:1 exponent:11 significand:52 (implied leading 1)*/
#if defined(SIZE_INT_32)
unsigned lo_significand:32;
unsigned hi_significand:20;
unsigned exponent:11;
unsigned sign:1;
#elif defined(SIZE_INT_64)
unsigned significand:52;
unsigned exponent:11;
unsigned sign:1;
#endif
};
struct fp80 { /*/ sign:1 exponent:15 significand:64 (NO implied bits) */
#if defined(SIZE_INT_32)
unsigned lo_significand;
unsigned hi_significand;
unsigned exponent:15;
unsigned sign:1;
#elif defined(SIZE_INT_64)
unsigned significand;
unsigned exponent:15;
unsigned sign:1;
#endif
unsigned pad:16;
#if !(defined(__unix__) && defined(__i386__))
unsigned padwin:32;
#endif
};
#endif /*__USE_EXTERNAL_FPMEMTYP_H__*/
#if !(defined(opensource))
typedef __int32 INT32;
typedef signed __int32 SINT32;
typedef unsigned __int32 UINT32;
typedef __int64 INT64;
typedef signed __int64 SINT64;
typedef unsigned __int64 UINT64;
#else
typedef int INT32;
typedef signed int SINT32;
typedef unsigned int UINT32;
typedef long long INT64;
typedef signed long long SINT64;
typedef unsigned long long UINT64;
#endif
#if (defined(_WIN32) || defined(_WIN64)) /* Windows */
# define I64CONST(bits) 0x##bits##i64
# define U64CONST(bits) 0x##bits##ui64
#elif (defined(__linux__) && defined(_M_IA64)) /* Linux,64 */
# define I64CONST(bits) 0x##bits##L
# define U64CONST(bits) 0x##bits##uL
#else /* Linux,32 */
# define I64CONST(bits) 0x##bits##LL
# define U64CONST(bits) 0x##bits##uLL
#endif
struct ker80 {
union {
long double ldhi;
struct fp80 fphi;
};
union {
long double ldlo;
struct fp80 fplo;
};
int ex;
};
/* Addition: x+y */
/* The result is sum rhi+rlo */
/* Temporary variables: t1 */
/* All variables are in long double precision */
/* Correct if no overflow (algorithm by D.Knuth) */
#define __LIBM_ADDL1_K80( rhi,rlo,x,y, t1 ) \
rhi = x + y; \
rlo = rhi - x; \
t1 = rhi - rlo; \
rlo = y - rlo; \
t1 = x - t1; \
rlo = rlo + t1;
/* Addition: (xhi+xlo) + (yhi+ylo) */
/* The result is sum rhi+rlo */
/* Temporary variables: t1 */
/* All variables are in long double precision */
/* Correct if no overflow (algorithm by T.J.Dekker) */
#define __LIBM_ADDL2_K80( rhi,rlo,xhi,xlo,yhi,ylo, t1 ) \
rlo = xhi+yhi; \
if ( VALUE_GT_80(FP80(xhi),FP80(yhi)) ) { \
t1=xhi-rlo;t1=t1+yhi;t1=t1+ylo;t1=t1+xlo; \
} else { \
t1=yhi-rlo;t1=t1+xhi;t1=t1+xlo;t1=t1+ylo; \
} \
rhi=rlo+t1; \
rlo=rlo-rhi;rlo=rlo+t1;
/* Addition: r=x+y */
/* Variables r,x,y are pointers to struct ker80, */
/* all other variables are in long double precision */
/* Temporary variables: t1 */
/* Correct if x and y belong to interval [2^-8000;2^8000], */
/* or when one or both of them are zero */
#if defined(SIZE_INT_32)
#define __LIBM_ADDL_K80(r,x,y, t1) \
if ( ((y)->ex+(y)->fphi.exponent-134 < \
(x)->ex+(x)->fphi.exponent) && \
((x)->ex+(x)->fphi.exponent < \
(y)->ex+(y)->fphi.exponent+134) && \
!SIGNIFICAND_ZERO_80(&((x)->fphi)) && \
!SIGNIFICAND_ZERO_80(&((y)->fphi)) ) \
{ \
/* y/2^134 < x < y*2^134, */ \
/* and x,y are nonzero finite numbers */ \
if ( (x)->ex != (y)->ex ) { \
/* adjust x->ex to y->ex */ \
/* t1 = 2^(x->ex - y->ex) */ \
FP80(t1)->sign = 0; \
FP80(t1)->exponent = BIAS_80 + (x)->ex-(y)->ex; \
/* exponent is correct because */ \
/* |x->ex - y->ex| = */ \
/* = | (x->ex + x->fphi.exponent) - */ \
/* -(y->ex + y->fphi.exponent) + */ \
/* + y->fphi.exponent - */ \
/* - x->fphi.exponent | < */ \
/* < | (x->ex+x->fphi.exponent) - */ \
/* -(y->ex+y->fphi.exponent) | + */ \
/* +| y->fphi.exponent - */ \
/* -x->fphi.exponent | < */ \
/* < 134 + 16000 */ \
FP80(t1)->hi_significand = 0x80000000; \
FP80(t1)->lo_significand = 0x00000000; \
(x)->ex = (y)->ex; \
(x)->ldhi *= t1; \
(x)->ldlo *= t1; \
} \
/* r==x+y */ \
(r)->ex = (y)->ex; \
__LIBM_ADDL2_K80( (r)->ldhi,(r)->ldlo, \
(x)->ldhi,(x)->ldlo, (y)->ldhi,(y)->ldlo, t1 ); \
} else if ( SIGNIFICAND_ZERO_80(&((x)->fphi)) || \
((y)->ex+(y)->fphi.exponent-BIAS_80 - 134 >= \
(x)->ex+(x)->fphi.exponent-BIAS_80) ) \
{ \
/* |x|<<|y| */ \
*(r) = *(y); \
} else { \
/* |y|<<|x| */ \
*(r) = *(x); \
}
#elif defined(SIZE_INT_64)
#define __LIBM_ADDL_K80(r,x,y, t1) \
if ( ((y)->ex+(y)->fphi.exponent-134 < \
(x)->ex+(x)->fphi.exponent) && \
((x)->ex+(x)->fphi.exponent < \
(y)->ex+(y)->fphi.exponent+134) && \
!SIGNIFICAND_ZERO_80(&((x)->fphi)) && \
!SIGNIFICAND_ZERO_80(&((y)->fphi)) ) \
{ \
/* y/2^134 < x < y*2^134, */ \
/* and x,y are nonzero finite numbers */ \
if ( (x)->ex != (y)->ex ) { \
/* adjust x->ex to y->ex */ \
/* t1 = 2^(x->ex - y->ex) */ \
FP80(t1)->sign = 0; \
FP80(t1)->exponent = BIAS_80 + (x)->ex-(y)->ex; \
/* exponent is correct because */ \
/* |x->ex - y->ex| = */ \
/* = | (x->ex + x->fphi.exponent) - */ \
/* -(y->ex + y->fphi.exponent) + */ \
/* + y->fphi.exponent - */ \
/* - x->fphi.exponent | < */ \
/* < | (x->ex+x->fphi.exponent) - */ \
/* -(y->ex+y->fphi.exponent) | + */ \
/* +| y->fphi.exponent - */ \
/* -x->fphi.exponent | < */ \
/* < 134 + 16000 */ \
FP80(t1)->significand = 0x8000000000000000; \
(x)->ex = (y)->ex; \
(x)->ldhi *= t1; \
(x)->ldlo *= t1; \
} \
/* r==x+y */ \
(r)->ex = (y)->ex; \
__LIBM_ADDL2_K80( (r)->ldhi,(r)->ldlo, \
(x)->ldhi,(x)->ldlo, (y)->ldhi,(y)->ldlo, t1 ); \
} else if ( SIGNIFICAND_ZERO_80(&((x)->fphi)) || \
((y)->ex+(y)->fphi.exponent-BIAS_80 - 134 >= \
(x)->ex+(x)->fphi.exponent-BIAS_80) ) \
{ \
/* |x|<<|y| */ \
*(r) = *(y); \
} else { \
/* |y|<<|x| */ \
*(r) = *(x); \
}
#endif
/* Addition: r=x+y */
/* Variables r,x,y are pointers to struct ker80, */
/* all other variables are in long double precision */
/* Temporary variables: t1 */
/* Correct for any finite x and y */
#define __LIBM_ADDL_NORM_K80(r,x,y, t1) \
if ( ((x)->fphi.exponent-BIAS_80<-8000) || \
((x)->fphi.exponent-BIAS_80>+8000) || \
((y)->fphi.exponent-BIAS_80<-8000) || \
((y)->fphi.exponent-BIAS_80>+8000) ) \
{ \
__libm_normalizel_k80(x); \
__libm_normalizel_k80(y); \
} \
__LIBM_ADDL_K80(r,x,y, t1)
/* Subtraction: x-y */
/* The result is sum rhi+rlo */
/* Temporary variables: t1 */
/* All variables are in long double precision */
/* Correct if no overflow (algorithm by D.Knuth) */
#define __LIBM_SUBL1_K80( rhi, rlo, x, y, t1 ) \
rhi = x - y; \
rlo = rhi - x; \
t1 = rhi - rlo; \
rlo = y + rlo; \
t1 = x - t1; \
rlo = t1 - rlo;
/* Subtraction: (xhi+xlo) - (yhi+ylo) */
/* The result is sum rhi+rlo */
/* Temporary variables: t1 */
/* All variables are in long double precision */
/* Correct if no overflow (algorithm by T.J.Dekker) */
#define __LIBM_SUBL2_K80( rhi,rlo,xhi,xlo,yhi,ylo, t1 ) \
rlo = xhi-yhi; \
if ( VALUE_GT_80(FP80(xhi),FP80(yhi)) ) { \
t1=xhi-rlo;t1=t1-yhi;t1=t1-ylo;t1=t1+xlo; \
} else { \
t1=yhi+rlo;t1=xhi-t1;t1=t1+xlo;t1=t1-ylo; \
} \
rhi=rlo+t1; \
rlo=rlo-rhi;rlo=rlo+t1;
/* Subtraction: r=x-y */
/* Variables r,x,y are pointers to struct ker80, */
/* all other variables are in long double precision */
/* Temporary variables: t1 */
/* Correct if x and y belong to interval [2^-8000;2^8000], */
/* or when one or both of them are zero */
#if defined(SIZE_INT_32)
#define __LIBM_SUBL_K80(r,x,y, t1) \
if ( ((y)->ex+(y)->fphi.exponent-134 < \
(x)->ex+(x)->fphi.exponent) && \
((x)->ex+(x)->fphi.exponent < \
(y)->ex+(y)->fphi.exponent+134) && \
!SIGNIFICAND_ZERO_80(&((x)->fphi)) && \
!SIGNIFICAND_ZERO_80(&((y)->fphi)) ) \
{ \
/* y/2^134 < x < y*2^134, */ \
/* and x,y are nonzero finite numbers */ \
if ( (x)->ex != (y)->ex ) { \
/* adjust x->ex to y->ex */ \
/* t1 = 2^(x->ex - y->ex) */ \
FP80(t1)->sign = 0; \
FP80(t1)->exponent = BIAS_80 + (x)->ex-(y)->ex; \
/* exponent is correct because */ \
/* |x->ex - y->ex| = */ \
/* = | (x->ex + x->fphi.exponent) - */ \
/* -(y->ex + y->fphi.exponent) + */ \
/* + y->fphi.exponent - */ \
/* - x->fphi.exponent | < */ \
/* < | (x->ex+x->fphi.exponent) - */ \
/* -(y->ex+y->fphi.exponent) | + */ \
/* +| y->fphi.exponent - */ \
/* -x->fphi.exponent | < */ \
/* < 134 + 16000 */ \
FP80(t1)->hi_significand = 0x80000000; \
FP80(t1)->lo_significand = 0x00000000; \
(x)->ex = (y)->ex; \
(x)->ldhi *= t1; \
(x)->ldlo *= t1; \
} \
/* r==x+y */ \
(r)->ex = (y)->ex; \
__LIBM_SUBL2_K80( (r)->ldhi,(r)->ldlo, \
(x)->ldhi,(x)->ldlo, (y)->ldhi,(y)->ldlo, t1 ); \
} else if ( SIGNIFICAND_ZERO_80(&((x)->fphi)) || \
((y)->ex+(y)->fphi.exponent-BIAS_80 - 134 >= \
(x)->ex+(x)->fphi.exponent-BIAS_80) ) \
{ \
/* |x|<<|y| */ \
(r)->ex = (y)->ex; \
(r)->ldhi = -((y)->ldhi); \
(r)->ldlo = -((y)->ldlo); \
} else { \
/* |y|<<|x| */ \
*(r) = *(x); \
}
#elif defined(SIZE_INT_64)
#define __LIBM_SUBL_K80(r,x,y, t1) \
if ( ((y)->ex+(y)->fphi.exponent-134 < \
(x)->ex+(x)->fphi.exponent) && \
((x)->ex+(x)->fphi.exponent < \
(y)->ex+(y)->fphi.exponent+134) && \
!SIGNIFICAND_ZERO_80(&((x)->fphi)) && \
!SIGNIFICAND_ZERO_80(&((y)->fphi)) ) \
{ \
/* y/2^134 < x < y*2^134, */ \
/* and x,y are nonzero finite numbers */ \
if ( (x)->ex != (y)->ex ) { \
/* adjust x->ex to y->ex */ \
/* t1 = 2^(x->ex - y->ex) */ \
FP80(t1)->sign = 0; \
FP80(t1)->exponent = BIAS_80 + (x)->ex-(y)->ex; \
/* exponent is correct because */ \
/* |x->ex - y->ex| = */ \
/* = | (x->ex + x->fphi.exponent) - */ \
/* -(y->ex + y->fphi.exponent) + */ \
/* + y->fphi.exponent - */ \
/* - x->fphi.exponent | < */ \
/* < | (x->ex+x->fphi.exponent) - */ \
/* -(y->ex+y->fphi.exponent) | + */ \
/* +| y->fphi.exponent - */ \
/* -x->fphi.exponent | < */ \
/* < 134 + 16000 */ \
FP80(t1)->significand = 0x8000000000000000; \
(x)->ex = (y)->ex; \
(x)->ldhi *= t1; \
(x)->ldlo *= t1; \
} \
/* r==x+y */ \
(r)->ex = (y)->ex; \
__LIBM_SUBL2_K80( (r)->ldhi,(r)->ldlo, \
(x)->ldhi,(x)->ldlo, (y)->ldhi,(y)->ldlo, t1 ); \
} else if ( SIGNIFICAND_ZERO_80(&((x)->fphi)) || \
((y)->ex+(y)->fphi.exponent-BIAS_80 - 134 >= \
(x)->ex+(x)->fphi.exponent-BIAS_80) ) \
{ \
/* |x|<<|y| */ \
(r)->ex = (y)->ex; \
(r)->ldhi = -((y)->ldhi); \
(r)->ldlo = -((y)->ldlo); \
} else { \
/* |y|<<|x| */ \
*(r) = *(x); \
}
#endif
/* Subtraction: r=x+y */
/* Variables r,x,y are pointers to struct ker80, */
/* all other variables are in long double precision */
/* Temporary variables: t1 */
/* Correct for any finite x and y */
#define __LIBM_SUBL_NORM_K80(r,x,y, t1) \
if ( ((x)->fphi.exponent-BIAS_80<-8000) || \
((x)->fphi.exponent-BIAS_80>+8000) || \
((y)->fphi.exponent-BIAS_80<-8000) || \
((y)->fphi.exponent-BIAS_80>+8000) ) \
{ \
__libm_normalizel_k80(x); \
__libm_normalizel_k80(y); \
} \
__LIBM_SUBL_K80(r,x,y, t1)
/* Multiplication: x*y */
/* The result is sum rhi+rlo */
/* Here t32 is the constant 2^32+1 */
/* Temporary variables: t1,t2,t3,t4,t5,t6 */
/* All variables are in long double precision */
/* Correct if no over/underflow (algorithm by T.J.Dekker) */
#define __LIBM_MULL1_K80(rhi,rlo,x,y, \
t32,t1,t2,t3,t4,t5,t6) \
t1=(x)*(t32); t3=x-t1; t3=t3+t1; t4=x-t3; \
t1=(y)*(t32); t5=y-t1; t5=t5+t1; t6=y-t5; \
t1=(t3)*(t5); \
t2=(t3)*(t6)+(t4)*(t5); \
rhi=t1+t2; \
rlo=t1-rhi; rlo=rlo+t2; rlo=rlo+(t4*t6);
/* Multiplication: (xhi+xlo)*(yhi+ylo) */
/* The result is sum rhi+rlo */
/* Here t32 is the constant 2^32+1 */
/* Temporary variables: t1,t2,t3,t4,t5,t6,t7,t8 */
/* All variables are in long double precision */
/* Correct if no over/underflow (algorithm by T.J.Dekker) */
#define __LIBM_MULL2_K80(rhi,rlo,xhi,xlo,yhi,ylo, \
t32,t1,t2,t3,t4,t5,t6,t7,t8) \
__LIBM_MULL1_K80(t7,t8,xhi,yhi, t32,t1,t2,t3,t4,t5,t6) \
t1=(xhi)*(ylo)+(xlo)*(yhi); t1=t1+t8; \
rhi=t7+t1; \
rlo=t7-rhi; rlo=rlo+t1;
/* Multiplication: r=x*y */
/* Variables r,x,y are pointers to struct ker80, */
/* all other variables are in long double precision */
/* Here t32 is the constant 2^32+1 */
/* Temporary variables: t1,t2,t3,t4,t5,t6,t7,t8 */
/* Correct if x and y belong to interval [2^-8000;2^8000] */
#define __LIBM_MULL_K80(r,x,y, t32,t1,t2,t3,t4,t5,t6,t7,t8) \
(r)->ex = (x)->ex + (y)->ex; \
__LIBM_MULL2_K80((r)->ldhi,(r)->ldlo, \
(x)->ldhi,(x)->ldlo,(y)->ldhi,(y)->ldlo, \
t32,t1,t2,t3,t4,t5,t6,t7,t8)
/* Multiplication: r=x*y */
/* Variables r,x,y are pointers to struct ker80, */
/* all other variables are in long double precision */
/* Here t32 is the constant 2^32+1 */
/* Temporary variables: t1,t2,t3,t4,t5,t6,t7,t8 */
/* Correct for any finite x and y */
#define __LIBM_MULL_NORM_K80(r,x,y, \
t32,t1,t2,t3,t4,t5,t6,t7,t8) \
if ( ((x)->fphi.exponent-BIAS_80<-8000) || \
((x)->fphi.exponent-BIAS_80>+8000) || \
((y)->fphi.exponent-BIAS_80<-8000) || \
((y)->fphi.exponent-BIAS_80>+8000) ) \
{ \
__libm_normalizel_k80(x); \
__libm_normalizel_k80(y); \
} \
__LIBM_MULL_K80(r,x,y, t32,t1,t2,t3,t4,t5,t6,t7,t8)
/* Division: (xhi+xlo)/(yhi+ylo) */
/* The result is sum rhi+rlo */
/* Here t32 is the constant 2^32+1 */
/* Temporary variables: t1,t2,t3,t4,t5,t6,t7,t8,t9 */
/* All variables are in long double precision */
/* Correct if no over/underflow (algorithm by T.J.Dekker) */
#define __LIBM_DIVL2_K80(rhi,rlo,xhi,xlo,yhi,ylo, \
t32,t1,t2,t3,t4,t5,t6,t7,t8,t9) \
t7=(xhi)/(yhi); \
__LIBM_MULL1_K80(t8,t9,t7,yhi, t32,t1,t2,t3,t4,t5,t6) \
t1=xhi-t8; t1=t1-t9; t1=t1+xlo; t1=t1-(t7)*(ylo); \
t1=(t1)/(yhi); \
rhi=t7+t1; \
rlo=t7-rhi; rlo=rlo+t1;
/* Division: r=x/y */
/* Variables r,x,y are pointers to struct ker80, */
/* all other variables are in long double precision */
/* Here t32 is the constant 2^32+1 */
/* Temporary variables: t1,t2,t3,t4,t5,t6,t7,t8,t9 */
/* Correct if x and y belong to interval [2^-8000;2^8000] */
#define __LIBM_DIVL_K80(r,x,y, \
t32,t1,t2,t3,t4,t5,t6,t7,t8,t9) \
(r)->ex = (x)->ex - (y)->ex; \
__LIBM_DIVL2_K80( (r)->ldhi,(r)->ldlo, \
(x)->ldhi,(x)->ldlo,(y)->ldhi,(y)->ldlo, \
t32,t1,t2,t3,t4,t5,t6,t7,t8,t9)
/* Division: r=x/y */
/* Variables r,x,y are pointers to struct ker80, */
/* all other variables are in long double precision */
/* Here t32 is the constant 2^32+1 */
/* Temporary variables: t1,t2,t3,t4,t5,t6,t7,t8 */
/* Correct for any finite x and y */
#define __LIBM_DIVL_NORM_K80(r,x,y, \
t32,t1,t2,t3,t4,t5,t6,t7,t8,t9) \
if ( ((x)->fphi.exponent-BIAS_80<-8000) || \
((x)->fphi.exponent-BIAS_80>+8000) || \
((y)->fphi.exponent-BIAS_80<-8000) || \
((y)->fphi.exponent-BIAS_80>+8000) ) \
{ \
__libm_normalizel_k80(x); \
__libm_normalizel_k80(y); \
} \
__LIBM_DIVL_K80(r,x,y, t32,t1,t2,t3,t4,t5,t6,t7,t8,t9)
/* Square root: sqrt(xhi+xlo) */
/* The result is sum rhi+rlo */
/* Here t32 is the constant 2^32+1 */
/* half is the constant 0.5 */
/* Temporary variables: t1,t2,t3,t4,t5,t6,t7,t8,t9 */
/* All variables are in long double precision */
/* Correct for positive xhi+xlo (algorithm by T.J.Dekker) */
#define __LIBM_SQRTL2_NORM_K80(rhi,rlo,xhi,xlo, \
t32,half,t1,t2,t3,t4,t5,t6,t7,t8,t9) \
t7=sqrtl(xhi); \
__LIBM_MULL1_K80(t8,t9,t7,t7, t32,t1,t2,t3,t4,t5,t6) \
t1=xhi-t8; t1=t1-t9; t1=t1+xlo; t1=(t1)*(half); \
t1=(t1)/(t7); \
rhi=t7+t1; \
rlo=t7-rhi; rlo=rlo+t1;
/* Square root: r=sqrt(x) */
/* Variables r,x,y are pointers to struct ker80, */
/* all other variables are in long double precision */
/* Here t32 is the constant 2^32+1 */
/* half is the constant 0.5 */
/* Temporary variables: t1,t2,t3,t4,t5,t6,t7,t8,t9 */
/* Correct if x belongs to interval [2^-16000;2^16000] */
#define __LIBM_SQRTL_K80(r,x, \
t32,half,t1,t2,t3,t4,t5,t6,t7,t8,t9) \
if ( ((x)->ex & 1) == 1 ) { \
(x)->ex = (x)->ex + 1; \
(x)->ldhi *= half; \
(x)->ldlo *= half; \
} \
(r)->ex = (x)->ex >> 1; \
__LIBM_SQRTL2_NORM_K80( (r)->ldhi,(r)->ldlo, \
(x)->ldhi,(x)->ldlo, \
t32,half,t1,t2,t3,t4,t5,t6,t7,t8,t9)
/* Square root: r=sqrt(x) */
/* Variables r,x,y are pointers to struct ker80, */
/* all other variables are in long double precision */
/* Here t32 is the constant 2^32+1 */
/* half is the constant 0.5 */
/* Temporary variables: t1,t2,t3,t4,t5,t6,t7,t8,t9 */
/* Correct for any positive x */
#define __LIBM_SQRTL_NORM_K80(r,x, \
t32,half,t1,t2,t3,t4,t5,t6,t7,t8,t9) \
if ( ((x)->fphi.exponent-BIAS_80<-16000) || \
((x)->fphi.exponent-BIAS_80>+16000) ) \
{ \
__libm_normalizel_k80(x); \
} \
__LIBM_SQRTL_K80(r,x, t32,half,t1,t2,t3,t4,t5,t6,t7,t8,t9)
#ifdef __INTEL_COMPILER
#define ALIGN(n) __declspec(align(n))
#else /* __INTEL_COMPILER */
#define ALIGN(n)
#endif /* __INTEL_COMPILER */
/* macros to form a long double value in hex representation (unsigned short type) */
#if (defined(__unix__) && defined(__i386__))
# define LDOUBLE_ALIGN 12 /* IA32 Linux: 12-byte alignment */
#else /*__linux__ & IA32*/
# define LDOUBLE_ALIGN 16 /* EFI2/IA32 Win or IPF Win/Linux: 16-byte alignment */
#endif /*__linux__ & IA32*/
#if (LDOUBLE_ALIGN == 16)
#define _XPD_ ,0x0000,0x0000,0x0000
#else /*12*/
#define _XPD_ ,0x0000
#endif
#define LDOUBLE_HEX(w4,w3,w2,w1,w0) 0x##w0,0x##w1,0x##w2,0x##w3,0x##w4 _XPD_ /*LITTLE_ENDIAN*/
/* macros to sign-expand low 'num' bits of 'val' to native integer */
#if defined(SIZE_INT_32)
# define SIGN_EXPAND(val,num) ((int)(val) << (32-(num))) >> (32-(num)) /* sign expand of 'num' LSBs */
#elif defined(SIZE_INT_64)
# define SIGN_EXPAND(val,num) ((int)(val) << (64-(num))) >> (64-(num)) /* sign expand of 'num' LSBs */
#endif
/* macros to form pointers to FP number on-the-fly */
#define FP32(f) ((struct fp32 *)&f)
#define FP64(d) ((struct fp64 *)&d)
#define FP80(ld) ((struct fp80 *)&ld)
/* macros to extract signed low and high doubleword of long double */
#if defined(SIZE_INT_32)
# define HI_DWORD_80(ld) ((((FP80(ld)->sign << 15) | FP80(ld)->exponent) << 16) | \
((FP80(ld)->hi_significand >> 16) & 0xFFFF))
# define LO_DWORD_80(ld) SIGN_EXPAND(FP80(ld)->lo_significand, 32)
#elif defined(SIZE_INT_64)
# define HI_DWORD_80(ld) ((((FP80(ld)->sign << 15) | FP80(ld)->exponent) << 16) | \
((FP80(ld)->significand >> 48) & 0xFFFF))
# define LO_DWORD_80(ld) SIGN_EXPAND(FP80(ld)->significand, 32)
#endif
/* macros to extract hi bits of significand.
* note that explicit high bit do not count (returns as is)
*/
#if defined(SIZE_INT_32)
# define HI_SIGNIFICAND_80(X,NBITS) ((X)->hi_significand >> (31 - (NBITS)))
#elif defined(SIZE_INT_64)
# define HI_SIGNIFICAND_80(X,NBITS) ((X)->significand >> (63 - (NBITS)))
#endif
/* macros to check, whether a significand bits are all zero, or some of them are non-zero.
* note that SIGNIFICAND_ZERO_80 tests high bit also, but SIGNIFICAND_NONZERO_80 does not
*/
#define SIGNIFICAND_ZERO_32(X) ((X)->significand == 0)
#define SIGNIFICAND_NONZERO_32(X) ((X)->significand != 0)
#if defined(SIZE_INT_32)
# define SIGNIFICAND_ZERO_64(X) (((X)->hi_significand == 0) && ((X)->lo_significand == 0))
# define SIGNIFICAND_NONZERO_64(X) (((X)->hi_significand != 0) || ((X)->lo_significand != 0))
#elif defined(SIZE_INT_64)
# define SIGNIFICAND_ZERO_64(X) ((X)->significand == 0)
# define SIGNIFICAND_NONZERO_64(X) ((X)->significand != 0)
#endif
#if defined(SIZE_INT_32)
# define SIGNIFICAND_ZERO_80(X) (((X)->hi_significand == 0x00000000) && ((X)->lo_significand == 0))
# define SIGNIFICAND_NONZERO_80(X) (((X)->hi_significand != 0x80000000) || ((X)->lo_significand != 0))
#elif defined(SIZE_INT_64)
# define SIGNIFICAND_ZERO_80(X) ((X)->significand == 0x0000000000000000)
# define SIGNIFICAND_NONZERO_80(X) ((X)->significand != 0x8000000000000000)
#endif
/* macros to compare long double with constant value, represented as hex */
#define SIGNIFICAND_EQ_HEX_32(X,BITS) ((X)->significand == 0x ## BITS)
#define SIGNIFICAND_GT_HEX_32(X,BITS) ((X)->significand > 0x ## BITS)
#define SIGNIFICAND_GE_HEX_32(X,BITS) ((X)->significand >= 0x ## BITS)
#define SIGNIFICAND_LT_HEX_32(X,BITS) ((X)->significand < 0x ## BITS)
#define SIGNIFICAND_LE_HEX_32(X,BITS) ((X)->significand <= 0x ## BITS)
#if defined(SIZE_INT_32)
# define SIGNIFICAND_EQ_HEX_64(X,HI,LO) \
(((X)->hi_significand == 0x ## HI) && ((X)->lo_significand == 0x ## LO))
# define SIGNIFICAND_GT_HEX_64(X,HI,LO) (((X)->hi_significand > 0x ## HI) || \
(((X)->hi_significand == 0x ## HI) && ((X)->lo_significand > 0x ## LO)))
# define SIGNIFICAND_GE_HEX_64(X,HI,LO) (((X)->hi_significand > 0x ## HI) || \
(((X)->hi_significand == 0x ## HI) && ((X)->lo_significand >= 0x ## LO)))
# define SIGNIFICAND_LT_HEX_64(X,HI,LO) (((X)->hi_significand < 0x ## HI) || \
(((X)->hi_significand == 0x ## HI) && ((X)->lo_significand < 0x ## LO)))
# define SIGNIFICAND_LE_HEX_64(X,HI,LO) (((X)->hi_significand < 0x ## HI) || \
(((X)->hi_significand == 0x ## HI) && ((X)->lo_significand <= 0x ## LO)))
#elif defined(SIZE_INT_64)
# define SIGNIFICAND_EQ_HEX_64(X,HI,LO) ((X)->significand == 0x ## HI ## LO)
# define SIGNIFICAND_GT_HEX_64(X,HI,LO) ((X)->significand > 0x ## HI ## LO)
# define SIGNIFICAND_GE_HEX_64(X,HI,LO) ((X)->significand >= 0x ## HI ## LO)
# define SIGNIFICAND_LT_HEX_64(X,HI,LO) ((X)->significand < 0x ## HI ## LO)
# define SIGNIFICAND_LE_HEX_64(X,HI,LO) ((X)->significand <= 0x ## HI ## LO)
#endif
#if defined(SIZE_INT_32)
# define SIGNIFICAND_EQ_HEX_80(X,HI,LO) \
(((X)->hi_significand == 0x ## HI) && ((X)->lo_significand == 0x ## LO))
# define SIGNIFICAND_GT_HEX_80(X,HI,LO) (((X)->hi_significand > 0x ## HI) || \
(((X)->hi_significand == 0x ## HI) && ((X)->lo_significand > 0x ## LO)))
# define SIGNIFICAND_GE_HEX_80(X,HI,LO) (((X)->hi_significand > 0x ## HI) || \
(((X)->hi_significand == 0x ## HI) && ((X)->lo_significand >= 0x ## LO)))
# define SIGNIFICAND_LT_HEX_80(X,HI,LO) (((X)->hi_significand < 0x ## HI) || \
(((X)->hi_significand == 0x ## HI) && ((X)->lo_significand < 0x ## LO)))
# define SIGNIFICAND_LE_HEX_80(X,HI,LO) (((X)->hi_significand < 0x ## HI) || \
(((X)->hi_significand == 0x ## HI) && ((X)->lo_significand <= 0x ## LO)))
#elif defined(SIZE_INT_64)
# define SIGNIFICAND_EQ_HEX_80(X,HI,LO) ((X)->significand == 0x ## HI ## LO)
# define SIGNIFICAND_GT_HEX_80(X,HI,LO) ((X)->significand > 0x ## HI ## LO)
# define SIGNIFICAND_GE_HEX_80(X,HI,LO) ((X)->significand >= 0x ## HI ## LO)
# define SIGNIFICAND_LT_HEX_80(X,HI,LO) ((X)->significand < 0x ## HI ## LO)
# define SIGNIFICAND_LE_HEX_80(X,HI,LO) ((X)->significand <= 0x ## HI ## LO)
#endif
#define VALUE_EQ_HEX_32(X,EXP,BITS) \
(((X)->exponent == (EXP)) && (SIGNIFICAND_EQ_HEX_32(X, BITS)))
#define VALUE_GT_HEX_32(X,EXP,BITS) (((X)->exponent > (EXP)) || \
(((X)->exponent == (EXP)) && (SIGNIFICAND_GT_HEX_32(X, BITS))))
#define VALUE_GE_HEX_32(X,EXP,BITS) (((X)->exponent > (EXP)) || \
(((X)->exponent == (EXP)) && (SIGNIFICAND_GE_HEX_32(X, BITS))))
#define VALUE_LT_HEX_32(X,EXP,BITS) (((X)->exponent < (EXP)) || \
(((X)->exponent == (EXP)) && (SIGNIFICAND_LT_HEX_32(X, BITS))))
#define VALUE_LE_HEX_32(X,EXP,BITS) (((X)->exponent < (EXP)) || \
(((X)->exponent == (EXP)) && (SIGNIFICAND_LE_HEX_32(X, BITS))))
#define VALUE_EQ_HEX_64(X,EXP,HI,LO) \
(((X)->exponent == (EXP)) && (SIGNIFICAND_EQ_HEX_64(X, HI, LO)))
#define VALUE_GT_HEX_64(X,EXP,HI,LO) (((X)->exponent > (EXP)) || \
(((X)->exponent == (EXP)) && (SIGNIFICAND_GT_HEX_64(X, HI, LO))))
#define VALUE_GE_HEX_64(X,EXP,HI,LO) (((X)->exponent > (EXP)) || \
(((X)->exponent == (EXP)) && (SIGNIFICAND_GE_HEX_64(X, HI, LO))))
#define VALUE_LT_HEX_64(X,EXP,HI,LO) (((X)->exponent < (EXP)) || \
(((X)->exponent == (EXP)) && (SIGNIFICAND_LT_HEX_64(X, HI, LO))))
#define VALUE_LE_HEX_64(X,EXP,HI,LO) (((X)->exponent < (EXP)) || \
(((X)->exponent == (EXP)) && (SIGNIFICAND_LE_HEX_64(X, HI, LO))))
#define VALUE_EQ_HEX_80(X,EXP,HI,LO) \
(((X)->exponent == (EXP)) && (SIGNIFICAND_EQ_HEX_80(X, HI, LO)))
#define VALUE_GT_HEX_80(X,EXP,HI,LO) (((X)->exponent > (EXP)) || \
(((X)->exponent == (EXP)) && (SIGNIFICAND_GT_HEX_80(X, HI, LO))))
#define VALUE_GE_HEX_80(X,EXP,HI,LO) (((X)->exponent > (EXP)) || \
(((X)->exponent == (EXP)) && (SIGNIFICAND_GE_HEX_80(X, HI, LO))))
#define VALUE_LT_HEX_80(X,EXP,HI,LO) (((X)->exponent < (EXP)) || \
(((X)->exponent == (EXP)) && (SIGNIFICAND_LT_HEX_80(X, HI, LO))))
#define VALUE_LE_HEX_80(X,EXP,HI,LO) (((X)->exponent < (EXP)) || \
(((X)->exponent == (EXP)) && (SIGNIFICAND_LE_HEX_80(X, HI, LO))))
/* macros to compare two long doubles */
#define SIGNIFICAND_EQ_32(X,Y) ((X)->significand == (Y)->significand)
#define SIGNIFICAND_GT_32(X,Y) ((X)->significand > (Y)->significand)
#define SIGNIFICAND_GE_32(X,Y) ((X)->significand >= (Y)->significand)
#define SIGNIFICAND_LT_32(X,Y) ((X)->significand < (Y)->significand)
#define SIGNIFICAND_LE_32(X,Y) ((X)->significand <= (Y)->significand)
#if defined(SIZE_INT_32)
# define SIGNIFICAND_EQ_64(X,Y) \
(((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand == (Y)->lo_significand))
# define SIGNIFICAND_GT_64(X,Y) (((X)->hi_significand > (Y)->hi_significand) || \
(((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand > (Y)->lo_significand)))
# define SIGNIFICAND_GE_64(X,Y) (((X)->hi_significand > (Y)->hi_significand) || \
(((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand >= (Y)->lo_significand)))
# define SIGNIFICAND_LT_64(X,Y) (((X)->hi_significand < (Y)->hi_significand) || \
(((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand < (Y)->lo_significand)))
# define SIGNIFICAND_LE_64(X,Y) (((X)->hi_significand < (Y)->hi_significand) || \
(((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand <= (Y)->lo_significand)))
#elif defined(SIZE_INT_64)
# define SIGNIFICAND_EQ_64(X,Y) ((X)->significand == (Y)->significand)
# define SIGNIFICAND_GT_64(X,Y) ((X)->significand > (Y)->significand)
# define SIGNIFICAND_GE_64(X,Y) ((X)->significand >= (Y)->significand)
# define SIGNIFICAND_LT_64(X,Y) ((X)->significand < (Y)->significand)
# define SIGNIFICAND_LE_64(X,Y) ((X)->significand <= (Y)->significand)
#endif
#if defined(SIZE_INT_32)
# define SIGNIFICAND_EQ_80(X,Y) \
(((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand == (Y)->lo_significand))
# define SIGNIFICAND_GT_80(X,Y) (((X)->hi_significand > (Y)->hi_significand) || \
(((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand > (Y)->lo_significand)))
# define SIGNIFICAND_GE_80(X,Y) (((X)->hi_significand > (Y)->hi_significand) || \
(((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand >= (Y)->lo_significand)))
# define SIGNIFICAND_LT_80(X,Y) (((X)->hi_significand < (Y)->hi_significand) || \
(((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand < (Y)->lo_significand)))
# define SIGNIFICAND_LE_80(X,Y) (((X)->hi_significand < (Y)->hi_significand) || \
(((X)->hi_significand == (Y)->hi_significand) && ((X)->lo_significand <= (Y)->lo_significand)))
#elif defined(SIZE_INT_64)
# define SIGNIFICAND_EQ_80(X,Y) ((X)->significand == (Y)->significand)
# define SIGNIFICAND_GT_80(X,Y) ((X)->significand > (Y)->significand)
# define SIGNIFICAND_GE_80(X,Y) ((X)->significand >= (Y)->significand)
# define SIGNIFICAND_LT_80(X,Y) ((X)->significand < (Y)->significand)
# define SIGNIFICAND_LE_80(X,Y) ((X)->significand <= (Y)->significand)
#endif
#define VALUE_EQ_32(X,Y) \
(((X)->exponent == (Y)->exponent) && (SIGNIFICAND_EQ_32(X, Y)))
#define VALUE_GT_32(X,Y) (((X)->exponent > (Y)->exponent) || \
(((X)->exponent == (Y)->exponent) && (SIGNIFICAND_GT_32(X, Y))))
#define VALUE_GE_32(X,Y) (((X)->exponent > (Y)->exponent) || \
(((X)->exponent == (Y)->exponent) && (SIGNIFICAND_GE_32(X, Y))))
#define VALUE_LT_32(X,Y) (((X)->exponent < (Y)->exponent) || \
(((X)->exponent == (Y)->exponent) && (SIGNIFICAND_LT_32(X, Y))))
#define VALUE_LE_32(X,Y) (((X)->exponent < (Y)->exponent) || \
(((X)->exponent == (Y)->exponent) && (SIGNIFICAND_LE_32(X, Y))))
#define VALUE_EQ_64(X,Y) \
(((X)->exponent == (Y)->exponent) && (SIGNIFICAND_EQ_64(X, Y)))
#define VALUE_GT_64(X,Y) (((X)->exponent > (Y)->exponent) || \
(((X)->exponent == (Y)->exponent) && (SIGNIFICAND_GT_64(X, Y))))
#define VALUE_GE_64(X,Y) (((X)->exponent > (Y)->exponent) || \
(((X)->exponent == (Y)->exponent) && (SIGNIFICAND_GE_64(X, Y))))
#define VALUE_LT_64(X,Y) (((X)->exponent < (Y)->exponent) || \
(((X)->exponent == (Y)->exponent) && (SIGNIFICAND_LT_64(X, Y))))
#define VALUE_LE_64(X,Y) (((X)->exponent < (Y)->exponent) || \
(((X)->exponent == (Y)->exponent) && (SIGNIFICAND_LE_64(X, Y))))
#define VALUE_EQ_80(X,Y) \
(((X)->exponent == (Y)->exponent) && (SIGNIFICAND_EQ_80(X, Y)))
#define VALUE_GT_80(X,Y) (((X)->exponent > (Y)->exponent) || \
(((X)->exponent == (Y)->exponent) && (SIGNIFICAND_GT_80(X, Y))))
#define VALUE_GE_80(X,Y) (((X)->exponent > (Y)->exponent) || \
(((X)->exponent == (Y)->exponent) && (SIGNIFICAND_GE_80(X, Y))))
#define VALUE_LT_80(X,Y) (((X)->exponent < (Y)->exponent) || \
(((X)->exponent == (Y)->exponent) && (SIGNIFICAND_LT_80(X, Y))))
#define VALUE_LE_80(X,Y) (((X)->exponent < (Y)->exponent) || \
(((X)->exponent == (Y)->exponent) && (SIGNIFICAND_LE_80(X, Y))))
/* add/subtract 1 ulp macros */
#if defined(SIZE_INT_32)
# define ADD_ULP_80(X) \
if ((++(X)->lo_significand == 0) && \
(++(X)->hi_significand == (((X)->exponent == 0) ? 0x80000000 : 0))) \
{ \
(X)->hi_significand |= 0x80000000; \
++(X)->exponent; \
}
# define SUB_ULP_80(X) \
if (--(X)->lo_significand == 0xFFFFFFFF) { \
--(X)->hi_significand; \
if (((X)->exponent != 0) && \
((X)->hi_significand == 0x7FFFFFFF) && \
(--(X)->exponent != 0)) \
{ \
(X)->hi_significand |= 0x80000000; \
} \
}
#elif defined(SIZE_INT_64)
# define ADD_ULP_80(X) \
if (++(X)->significand == (((X)->exponent == 0) ? 0x8000000000000000 : 0))) { \
(X)->significand |= 0x8000000000000000; \
++(X)->exponent; \
}
# define SUB_ULP_80(X) \
{ \
--(X)->significand; \
if (((X)->exponent != 0) && \
((X)->significand == 0x7FFFFFFFFFFFFFFF) && \
(--(X)->exponent != 0)) \
{ \
(X)->significand |= 0x8000000000000000; \
} \
}
#endif
/* */
#define VOLATILE_32 /*volatile*/
#define VOLATILE_64 /*volatile*/
#define VOLATILE_80 /*volatile*/
#define QUAD_TYPE _Quad
#endif /*__LIBM_SUPPORT_H_INCLUDED__*/
|