about summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/e_sinhl.S
blob: b697c486017b6bda6247f78f59d77410a6b5826b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
.file "sinhl.s"

// Copyright (c) 2000, 2001, Intel Corporation
// All rights reserved.
// 
// Contributed 2/2/2000 by John Harrison, Ted Kubaska, Bob Norin, Shane Story,
// and Ping Tak Peter Tang of the Computational Software Lab, Intel Corporation.
// 
// WARRANTY DISCLAIMER
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS 
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY 
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
// 
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at 
// http://developer.intel.com/opensource.
//
// History
//==============================================================
// 2/02/00  Initial version
// 4/04/00  Unwind support added
// 8/15/00  Bundle added after call to __libm_error_support to properly
//          set [the previously overwritten] GR_Parameter_RESULT.
// 10/12/00 Update to set denormal operand and underflow flags
// 1/22/01  Fixed to set inexact flag for small args.  Fixed incorrect 
//          call to __libm_error_support for 710.476 < x < 11357.2166.
//
// API
//==============================================================
// long double = sinhl(long double)
// input  floating point f8
// output floating point f8
//
// Registers used
//==============================================================
// general registers: 
// r32 -> r47
// predicate registers used:
// p6 p7 p8 p9
// floating-point registers used:
// f9 -> f15; f32 -> f45; 
// f8 has input, then output
//
// Overview of operation
//==============================================================
// There are four paths
// 1. |x| < 0.25        SINH_BY_POLY
// 2. |x| < 32          SINH_BY_TBL
// 3. |x| < 2^14        SINH_BY_EXP
// 4. |x_ >= 2^14       SINH_HUGE
//
// For double extended we get infinity for x >= 400c b174 ddc0 31ae c0ea
//                                           >= 1.0110001.... x 2^13
//                                           >= 11357.2166
//
// But for double we get infinity for x >= 408633ce8fb9f87e
//                                      >= 1.0110...x 2^9
//                                      >= +7.10476e+002
//
// And for single we get infinity for x >= 42b3a496
//                                      >= 1.0110... 2^6
//                                      >= 89.8215
//
// SAFE: If there is danger of overflow set SAFE to 0
//       NOT implemented: if there is danger of underflow, set SAFE to 0
// SAFE for all paths listed below
//
// 1. SINH_BY_POLY
// ===============
// If |x| is less than the tiny threshold, then clear SAFE 
// For double, the tiny threshold is -1022 = -0x3fe => -3fe + ffff = fc01
//             register-biased, this is fc01
// For single, the tiny threshold is -126  = -7e    => -7e  + ffff = ff81
// If |x| < tiny threshold, set SAFE = 0
//
// 2. SINH_BY_TBL
// =============
// SAFE: SAFE is always 1 for TBL; 
//
// 3. SINH_BY_EXP
// ==============
// There is a danger of double-extended overflow   if N-1 > 16382 = 0x3ffe
// r34 has N-1; 16382 is in register biased form, 0x13ffd
// There is danger of double overflow if N-1 > 0x3fe
//                       in register biased form, 0x103fd
// Analagously, there is danger of single overflow if N-1 > 0x7e
//                       in register biased form, 0x1007d
// SAFE: If there is danger of overflow set SAFE to 0
//
// 4. SINH_HUGE
// ============
// SAFE: SAFE is always 0 for HUGE
//

#include "libm_support.h"

// Assembly macros
//==============================================================
sinh_FR_X            = f44
sinh_FR_X2           = f9
sinh_FR_X4           = f10
sinh_FR_SGNX         = f40
sinh_FR_all_ones     = f45
sinh_FR_tmp          = f42

sinh_FR_Inv_log2by64 = f9
sinh_FR_log2by64_lo  = f11
sinh_FR_log2by64_hi  = f10

sinh_FR_A1           = f9
sinh_FR_A2           = f10
sinh_FR_A3           = f11

sinh_FR_Rcub         = f12
sinh_FR_M_temp       = f13
sinh_FR_R_temp       = f13
sinh_FR_Rsq          = f13
sinh_FR_R            = f14

sinh_FR_M            = f38

sinh_FR_B1           = f15
sinh_FR_B2           = f32
sinh_FR_B3           = f33

sinh_FR_peven_temp1  = f34
sinh_FR_peven_temp2  = f35
sinh_FR_peven        = f36

sinh_FR_podd_temp1   = f34
sinh_FR_podd_temp2   = f35
sinh_FR_podd         = f37

sinh_FR_poly_podd_temp1    =  f11 
sinh_FR_poly_podd_temp2    =  f13
sinh_FR_poly_peven_temp1   =  f11
sinh_FR_poly_peven_temp2   =  f13

sinh_FR_J_temp       = f9
sinh_FR_J            = f10

sinh_FR_Mmj          = f39

sinh_FR_N_temp1      = f11
sinh_FR_N_temp2      = f12
sinh_FR_N            = f13

sinh_FR_spos         = f14
sinh_FR_sneg         = f15

sinh_FR_Tjhi         = f32
sinh_FR_Tjlo         = f33
sinh_FR_Tmjhi        = f34
sinh_FR_Tmjlo        = f35

sinh_GR_mJ           = r35
sinh_GR_J            = r36

sinh_AD_mJ           = r38
sinh_AD_J            = r39
sinh_GR_all_ones     = r40

sinh_FR_S_hi         = f9
sinh_FR_S_hi_temp    = f10
sinh_FR_S_lo_temp1   = f11 
sinh_FR_S_lo_temp2   = f12 
sinh_FR_S_lo_temp3   = f13 

sinh_FR_S_lo         = f38
sinh_FR_C_hi         = f39

sinh_FR_C_hi_temp1   = f10
sinh_FR_Y_hi         = f11 
sinh_FR_Y_lo_temp    = f12 
sinh_FR_Y_lo         = f13 
sinh_FR_SINH         = f9

sinh_FR_P1           = f14
sinh_FR_P2           = f15
sinh_FR_P3           = f32
sinh_FR_P4           = f33
sinh_FR_P5           = f34
sinh_FR_P6           = f35

sinh_FR_TINY_THRESH  = f9

sinh_FR_SINH_temp    = f10
sinh_FR_SCALE        = f11 

sinh_FR_signed_hi_lo = f10


GR_SAVE_PFS          = r41
GR_SAVE_B0           = r42
GR_SAVE_GP           = r43

GR_Parameter_X       = r44
GR_Parameter_Y       = r45
GR_Parameter_RESULT  = r46

// Data tables
//==============================================================

#ifdef _LIBC
.rodata
#else
.data
#endif

.align 16
double_sinh_arg_reduction:
ASM_TYPE_DIRECTIVE(double_sinh_arg_reduction,@object)
   data8 0xB8AA3B295C17F0BC, 0x00004005
   data8 0xB17217F7D1000000, 0x00003FF8
   data8 0xCF79ABC9E3B39804, 0x00003FD0
ASM_SIZE_DIRECTIVE(double_sinh_arg_reduction)

double_sinh_p_table:
ASM_TYPE_DIRECTIVE(double_sinh_p_table,@object)
   data8 0xAAAAAAAAAAAAAAAB, 0x00003FFC
   data8 0x8888888888888412, 0x00003FF8
   data8 0xD00D00D00D4D39F2, 0x00003FF2
   data8 0xB8EF1D28926D8891, 0x00003FEC
   data8 0xD732377688025BE9, 0x00003FE5
   data8 0xB08AF9AE78C1239F, 0x00003FDE
ASM_SIZE_DIRECTIVE(double_sinh_p_table)

double_sinh_ab_table:
ASM_TYPE_DIRECTIVE(double_sinh_ab_table,@object)
   data8 0xAAAAAAAAAAAAAAAC, 0x00003FFC
   data8 0x88888888884ECDD5, 0x00003FF8
   data8 0xD00D0C6DCC26A86B, 0x00003FF2
   data8 0x8000000000000002, 0x00003FFE
   data8 0xAAAAAAAAAA402C77, 0x00003FFA
   data8 0xB60B6CC96BDB144D, 0x00003FF5
ASM_SIZE_DIRECTIVE(double_sinh_ab_table)

double_sinh_j_table:
ASM_TYPE_DIRECTIVE(double_sinh_j_table,@object)
   data8 0xB504F333F9DE6484, 0x00003FFE, 0x1EB2FB13, 0x00000000
   data8 0xB6FD91E328D17791, 0x00003FFE, 0x1CE2CBE2, 0x00000000
   data8 0xB8FBAF4762FB9EE9, 0x00003FFE, 0x1DDC3CBC, 0x00000000
   data8 0xBAFF5AB2133E45FB, 0x00003FFE, 0x1EE9AA34, 0x00000000
   data8 0xBD08A39F580C36BF, 0x00003FFE, 0x9EAEFDC1, 0x00000000
   data8 0xBF1799B67A731083, 0x00003FFE, 0x9DBF517B, 0x00000000
   data8 0xC12C4CCA66709456, 0x00003FFE, 0x1EF88AFB, 0x00000000
   data8 0xC346CCDA24976407, 0x00003FFE, 0x1E03B216, 0x00000000
   data8 0xC5672A115506DADD, 0x00003FFE, 0x1E78AB43, 0x00000000
   data8 0xC78D74C8ABB9B15D, 0x00003FFE, 0x9E7B1747, 0x00000000
   data8 0xC9B9BD866E2F27A3, 0x00003FFE, 0x9EFE3C0E, 0x00000000
   data8 0xCBEC14FEF2727C5D, 0x00003FFE, 0x9D36F837, 0x00000000
   data8 0xCE248C151F8480E4, 0x00003FFE, 0x9DEE53E4, 0x00000000
   data8 0xD06333DAEF2B2595, 0x00003FFE, 0x9E24AE8E, 0x00000000
   data8 0xD2A81D91F12AE45A, 0x00003FFE, 0x1D912473, 0x00000000
   data8 0xD4F35AABCFEDFA1F, 0x00003FFE, 0x1EB243BE, 0x00000000
   data8 0xD744FCCAD69D6AF4, 0x00003FFE, 0x1E669A2F, 0x00000000
   data8 0xD99D15C278AFD7B6, 0x00003FFE, 0x9BBC610A, 0x00000000
   data8 0xDBFBB797DAF23755, 0x00003FFE, 0x1E761035, 0x00000000
   data8 0xDE60F4825E0E9124, 0x00003FFE, 0x9E0BE175, 0x00000000
   data8 0xE0CCDEEC2A94E111, 0x00003FFE, 0x1CCB12A1, 0x00000000
   data8 0xE33F8972BE8A5A51, 0x00003FFE, 0x1D1BFE90, 0x00000000
   data8 0xE5B906E77C8348A8, 0x00003FFE, 0x1DF2F47A, 0x00000000
   data8 0xE8396A503C4BDC68, 0x00003FFE, 0x1EF22F22, 0x00000000
   data8 0xEAC0C6E7DD24392F, 0x00003FFE, 0x9E3F4A29, 0x00000000
   data8 0xED4F301ED9942B84, 0x00003FFE, 0x1EC01A5B, 0x00000000
   data8 0xEFE4B99BDCDAF5CB, 0x00003FFE, 0x1E8CAC3A, 0x00000000
   data8 0xF281773C59FFB13A, 0x00003FFE, 0x9DBB3FAB, 0x00000000
   data8 0xF5257D152486CC2C, 0x00003FFE, 0x1EF73A19, 0x00000000
   data8 0xF7D0DF730AD13BB9, 0x00003FFE, 0x9BB795B5, 0x00000000
   data8 0xFA83B2DB722A033A, 0x00003FFE, 0x1EF84B76, 0x00000000
   data8 0xFD3E0C0CF486C175, 0x00003FFE, 0x9EF5818B, 0x00000000
   data8 0x8000000000000000, 0x00003FFF, 0x00000000, 0x00000000
   data8 0x8164D1F3BC030773, 0x00003FFF, 0x1F77CACA, 0x00000000
   data8 0x82CD8698AC2BA1D7, 0x00003FFF, 0x1EF8A91D, 0x00000000
   data8 0x843A28C3ACDE4046, 0x00003FFF, 0x1E57C976, 0x00000000
   data8 0x85AAC367CC487B15, 0x00003FFF, 0x9EE8DA92, 0x00000000
   data8 0x871F61969E8D1010, 0x00003FFF, 0x1EE85C9F, 0x00000000
   data8 0x88980E8092DA8527, 0x00003FFF, 0x1F3BF1AF, 0x00000000
   data8 0x8A14D575496EFD9A, 0x00003FFF, 0x1D80CA1E, 0x00000000
   data8 0x8B95C1E3EA8BD6E7, 0x00003FFF, 0x9D0373AF, 0x00000000
   data8 0x8D1ADF5B7E5BA9E6, 0x00003FFF, 0x9F167097, 0x00000000
   data8 0x8EA4398B45CD53C0, 0x00003FFF, 0x1EB70051, 0x00000000
   data8 0x9031DC431466B1DC, 0x00003FFF, 0x1F6EB029, 0x00000000
   data8 0x91C3D373AB11C336, 0x00003FFF, 0x1DFD6D8E, 0x00000000
   data8 0x935A2B2F13E6E92C, 0x00003FFF, 0x9EB319B0, 0x00000000
   data8 0x94F4EFA8FEF70961, 0x00003FFF, 0x1EBA2BEB, 0x00000000
   data8 0x96942D3720185A00, 0x00003FFF, 0x1F11D537, 0x00000000
   data8 0x9837F0518DB8A96F, 0x00003FFF, 0x1F0D5A46, 0x00000000
   data8 0x99E0459320B7FA65, 0x00003FFF, 0x9E5E7BCA, 0x00000000
   data8 0x9B8D39B9D54E5539, 0x00003FFF, 0x9F3AAFD1, 0x00000000
   data8 0x9D3ED9A72CFFB751, 0x00003FFF, 0x9E86DACC, 0x00000000
   data8 0x9EF5326091A111AE, 0x00003FFF, 0x9F3EDDC2, 0x00000000
   data8 0xA0B0510FB9714FC2, 0x00003FFF, 0x1E496E3D, 0x00000000
   data8 0xA27043030C496819, 0x00003FFF, 0x9F490BF6, 0x00000000
   data8 0xA43515AE09E6809E, 0x00003FFF, 0x1DD1DB48, 0x00000000
   data8 0xA5FED6A9B15138EA, 0x00003FFF, 0x1E65EBFB, 0x00000000
   data8 0xA7CD93B4E965356A, 0x00003FFF, 0x9F427496, 0x00000000
   data8 0xA9A15AB4EA7C0EF8, 0x00003FFF, 0x1F283C4A, 0x00000000
   data8 0xAB7A39B5A93ED337, 0x00003FFF, 0x1F4B0047, 0x00000000
   data8 0xAD583EEA42A14AC6, 0x00003FFF, 0x1F130152, 0x00000000
   data8 0xAF3B78AD690A4375, 0x00003FFF, 0x9E8367C0, 0x00000000
   data8 0xB123F581D2AC2590, 0x00003FFF, 0x9F705F90, 0x00000000
   data8 0xB311C412A9112489, 0x00003FFF, 0x1EFB3C53, 0x00000000
   data8 0xB504F333F9DE6484, 0x00003FFF, 0x1F32FB13, 0x00000000
ASM_SIZE_DIRECTIVE(double_sinh_j_table)

.align 32
.global sinhl#

.section .text
.proc  sinhl#
.align 32

sinhl:
#ifdef _LIBC
.global __ieee754_sinhl
.type __ieee754_sinhl,@function
__ieee754_sinhl:
#endif

// X infinity or NAN?
// Take invalid fault if enabled


{ .mfi
      alloc r32 = ar.pfs,0,12,4,0                  
(p0)     fclass.m.unc  p6,p0 = f8, 0xe3	//@qnan | @snan | @inf 
         mov sinh_GR_all_ones = -1
}
;;


{ .mfb
         nop.m 999
(p6)     fma.s0   f8 = f8,f1,f8               
(p6)     br.ret.spnt     b0 ;;                          
}

// Put 0.25 in f9; p6 true if x < 0.25
// Make constant that will generate inexact when squared
{ .mlx
         setf.sig sinh_FR_all_ones = sinh_GR_all_ones 
(p0)     movl            r32 = 0x000000000000fffd ;;         
}

{ .mfi
(p0)     setf.exp        f9 = r32                         
(p0)     fclass.m.unc  p7,p0 = f8, 0x07	//@zero
         nop.i 999 ;;
}

{ .mfb
         nop.m 999
(p0)     fmerge.s      sinh_FR_X    = f0,f8             
(p7)     br.ret.spnt     b0 ;;                          
}

// Identify denormal operands.
{ .mfi
         nop.m 999
         fclass.m.unc  p10,p0 = f8, 0x09        //  + denorm
         nop.i 999
};;
{ .mfi
         nop.m 999
         fclass.m.unc  p11,p0 = f8, 0x0a        //  - denorm
         nop.i 999 
}

{ .mfi
         nop.m 999
(p0)     fmerge.s      sinh_FR_SGNX = f8,f1             
         nop.i 999 ;;
}

{ .mfi
         nop.m 999
(p0)     fcmp.lt.unc.s1  p0,p7 = sinh_FR_X,f9             
         nop.i 999 ;;
}

{ .mib
         nop.m 999
         nop.i 999
(p7)     br.cond.sptk    L(SINH_BY_TBL) ;;                      
}


L(SINH_BY_POLY): 

// POLY cannot overflow so there is no need to call __libm_error_support
// Set tiny_SAFE (p7) to 1(0) if answer is not tiny 
// Currently we do not use tiny_SAFE. So the setting of tiny_SAFE is
// commented out.
//(p0)     movl            r32            = 0x000000000000fc01           
//(p0)     setf.exp        f10            = r32                         
//(p0)     fcmp.lt.unc.s1  p6,p7          = f8,f10                     
// Here is essentially the algorithm for SINH_BY_POLY. Care is take for the order 
// of multiplication; and P_1 is not exactly 1/3!, P_2 is not exactly 1/5!, etc.
// Note that ax = |x|
// sinh(x) = sign * (series(e^x) - series(e^-x))/2
//         = sign * (ax + ax^3/3! + ax^5/5! + ax^7/7! + ax^9/9! + ax^11/11! + ax^13/13!)
//         = sign * (ax   + ax * ( ax^2 * (1/3! + ax^4 * (1/7! + ax^4*1/11!)) )
//                        + ax * ( ax^4 * (1/5! + ax^4 * (1/9! + ax^4*1/13!)) ) )
//         = sign * (ax   + ax*p_odd + (ax*p_even))
//         = sign * (ax   + Y_lo)
// sinh(x) = sign * (Y_hi + Y_lo)
// Get the values of P_x from the table
{ .mfb
(p0)  addl           r34   = @ltoff(double_sinh_p_table), gp
(p10) fma.s0       f8 =  f8,f8,f8
(p10) br.ret.spnt    b0
}
;;

{ .mfb
      ld8 r34 = [r34]
(p11) fnma.s0      f8 =  f8,f8,f8
(p11) br.ret.spnt    b0
}
;;

// Calculate sinh_FR_X2 = ax*ax and sinh_FR_X4 = ax*ax*ax*ax
{ .mmf
         nop.m 999
(p0)     ldfe            sinh_FR_P1 = [r34],16                 
(p0)     fma.s1        sinh_FR_X2 = sinh_FR_X, sinh_FR_X, f0 ;;           
}

{ .mmi
(p0)     ldfe            sinh_FR_P2 = [r34],16 ;;                 
(p0)     ldfe            sinh_FR_P3 = [r34],16                 
         nop.i 999 ;;
}

{ .mmi
(p0)     ldfe            sinh_FR_P4 = [r34],16 ;;                 
(p0)     ldfe            sinh_FR_P5 = [r34],16                 
         nop.i 999 ;;
}

{ .mfi
(p0)     ldfe            sinh_FR_P6 = [r34],16                 
(p0)     fma.s1        sinh_FR_X4 = sinh_FR_X2, sinh_FR_X2, f0         
         nop.i 999 ;;
}

// Calculate sinh_FR_podd = p_odd and sinh_FR_peven = p_even 
{ .mfi
         nop.m 999
(p0)     fma.s1      sinh_FR_poly_podd_temp1 = sinh_FR_X4, sinh_FR_P5, sinh_FR_P3                
         nop.i 999 ;;
}

{ .mfi
         nop.m 999
(p0)     fma.s1      sinh_FR_poly_podd_temp2 = sinh_FR_X4, sinh_FR_poly_podd_temp1, sinh_FR_P1   
         nop.i 999
}

{ .mfi
         nop.m 999
(p0)     fma.s1      sinh_FR_poly_peven_temp1 = sinh_FR_X4, sinh_FR_P6, sinh_FR_P4               
         nop.i 999 ;;
}

{ .mfi
         nop.m 999
(p0)     fma.s1      sinh_FR_podd       = sinh_FR_X2, sinh_FR_poly_podd_temp2, f0           
         nop.i 999
}

{ .mfi
         nop.m 999
(p0)     fma.s1      sinh_FR_poly_peven_temp2 = sinh_FR_X4, sinh_FR_poly_peven_temp1, sinh_FR_P2 
         nop.i 999 ;;
}

{ .mfi
         nop.m 999
(p0)     fma.s1      sinh_FR_peven       = sinh_FR_X4, sinh_FR_poly_peven_temp2, f0         
         nop.i 999 ;;
}

// Calculate sinh_FR_Y_lo = ax*p_odd + (ax*p_even)
{ .mfi
         nop.m 999
(p0)     fma.s1      sinh_FR_Y_lo_temp    = sinh_FR_X, sinh_FR_peven, f0                    
         nop.i 999 ;;
}

{ .mfi
         nop.m 999
(p0)     fma.s1      sinh_FR_Y_lo         = sinh_FR_X, sinh_FR_podd,  sinh_FR_Y_lo_temp          
         nop.i 999 ;;
}

// Calculate sinh_FR_SINH = Y_hi + Y_lo. Note that ax = Y_hi
{ .mfi
         nop.m 999
(p0)     fma.s1      sinh_FR_SINH        = sinh_FR_X, f1, sinh_FR_Y_lo                      
         nop.i 999 ;;
}
// Dummy multiply to generate inexact
{ .mfi
         nop.m 999
(p0)     fmpy.s0      sinh_FR_tmp = sinh_FR_all_ones, sinh_FR_all_ones
         nop.i 999
}

// Calculate f8 = sign * (Y_hi + Y_lo)
// Go to return
{ .mfb
         nop.m 999
(p0)     fma.s0        f8 = sinh_FR_SGNX,sinh_FR_SINH,f0                       
(p0)     br.ret.sptk     b0 ;;                          
}


L(SINH_BY_TBL): 

// Now that we are at TBL; so far all we know is that |x| >= 0.25.
// The first two steps are the same for TBL and EXP, but if we are HUGE
// we want to leave now. 
// Double-extended:
// Go to HUGE if |x| >= 2^14, 1000d (register-biased) is e = 14 (true)
// Double
// Go to HUGE if |x| >= 2^10, 10009 (register-biased) is e = 10 (true)
// Single
// Go to HUGE if |x| >= 2^7,  10006 (register-biased) is e =  7 (true)

{ .mlx
         nop.m 999
(p0)     movl            r32 = 0x000000000001000d ;;         
}

{ .mfi
(p0)     setf.exp        f9 = r32                         
         nop.f 999
         nop.i 999 ;;
}

{ .mfi
         nop.m 999
(p0)     fcmp.ge.unc.s1  p6,p7 = sinh_FR_X,f9             
         nop.i 999 ;;
}

{ .mib
         nop.m 999
         nop.i 999
(p6)     br.cond.spnt    L(SINH_HUGE) ;;                        
}

// r32 = 1
// r34 = N-1 
// r35 = N
// r36 = j
// r37 = N+1

// TBL can never overflow
// sinh(x) = sinh(B+R)
//         = sinh(B)cosh(R) + cosh(B)sinh(R)
// 
// ax = |x| = M*log2/64 + R
// B = M*log2/64
// M = 64*N + j 
//   We will calcualte M and get N as (M-j)/64
//   The division is a shift.
// exp(B)  = exp(N*log2 + j*log2/64)
//         = 2^N * 2^(j*log2/64)
// sinh(B) = 1/2(e^B -e^-B)
//         = 1/2(2^N * 2^(j*log2/64) - 2^-N * 2^(-j*log2/64)) 
// sinh(B) = (2^(N-1) * 2^(j*log2/64) - 2^(-N-1) * 2^(-j*log2/64)) 
// cosh(B) = (2^(N-1) * 2^(j*log2/64) + 2^(-N-1) * 2^(-j*log2/64)) 
// 2^(j*log2/64) is stored as Tjhi + Tjlo , j= -32,....,32
// Tjhi is double-extended (80-bit) and Tjlo is single(32-bit)
// R = ax - M*log2/64
// R = ax - M*log2_by_64_hi - M*log2_by_64_lo
// exp(R) = 1 + R +R^2(1/2! + R(1/3! + R(1/4! + ... + R(1/n!)...)
//        = 1 + p_odd + p_even
//        where the p_even uses the A coefficients and the p_even uses the B coefficients
// So sinh(R) = 1 + p_odd + p_even -(1 -p_odd -p_even)/2 = p_odd
//    cosh(R) = 1 + p_even
//    sinh(B) = S_hi + S_lo
//    cosh(B) = C_hi
// sinh(x) = sinh(B)cosh(R) + cosh(B)sinh(R)
// ******************************************************
// STEP 1 (TBL and EXP)
// ******************************************************
// Get the following constants. 
// f9  = Inv_log2by64
// f10 = log2by64_hi
// f11 = log2by64_lo

{ .mmi
(p0)  adds                 r32 = 0x1,r0      
(p0)  addl           r34   = @ltoff(double_sinh_arg_reduction), gp
      nop.i 999
}
;;

{ .mmi
      ld8 r34 = [r34]
      nop.m 999
      nop.i 999
}
;;


// We want 2^(N-1) and 2^(-N-1). So bias N-1 and -N-1 and
// put them in an exponent.
// sinh_FR_spos = 2^(N-1) and sinh_FR_sneg = 2^(-N-1)
// r39 = 0xffff + (N-1)  = 0xffff +N -1
// r40 = 0xffff - (N +1) = 0xffff -N -1

{ .mlx
         nop.m 999
(p0)     movl                r38 = 0x000000000000fffe ;; 
}

{ .mmi
(p0)     ldfe            sinh_FR_Inv_log2by64 = [r34],16 ;;       
(p0)     ldfe            sinh_FR_log2by64_hi  = [r34],16       
         nop.i 999 ;;
}

{ .mbb
(p0)     ldfe            sinh_FR_log2by64_lo  = [r34],16       
         nop.b 999
         nop.b 999 ;;
}

// Get the A coefficients
// f9  = A_1
// f10 = A_2
// f11 = A_3

{ .mmi
      nop.m 999
(p0)  addl           r34   = @ltoff(double_sinh_ab_table), gp
      nop.i 999
}
;;

{ .mmi
      ld8 r34 = [r34]
      nop.m 999
      nop.i 999
}
;;


// Calculate M and keep it as integer and floating point.
// f38 = M = round-to-integer(x*Inv_log2by64)
// sinh_FR_M = M = truncate(ax/(log2/64))
// Put the significand of M in r35
//    and the floating point representation of M in sinh_FR_M

{ .mfi
         nop.m 999
(p0)     fma.s1          sinh_FR_M      = sinh_FR_X, sinh_FR_Inv_log2by64, f0 
         nop.i 999
}

{ .mfi
(p0)     ldfe            sinh_FR_A1 = [r34],16            
         nop.f 999
         nop.i 999 ;;
}

{ .mfi
         nop.m 999
(p0)     fcvt.fx.s1      sinh_FR_M_temp = sinh_FR_M                      
         nop.i 999 ;;
}

{ .mfi
         nop.m 999
(p0)     fnorm.s1        sinh_FR_M      = sinh_FR_M_temp                 
         nop.i 999 ;;
}

{ .mfi
(p0)     getf.sig        r35       = sinh_FR_M_temp                 
         nop.f 999
         nop.i 999 ;;
}

// M is still in r35. Calculate j. j is the signed extension of the six lsb of M. It 
// has a range of -32 thru 31.
// r35 = M
// r36 = j 

{ .mii
         nop.m 999
         nop.i 999 ;;
(p0)     and            r36 = 0x3f, r35 ;;   
}

// Calculate R
// f13 = f44 - f12*f10 = ax - M*log2by64_hi
// f14 = f13 - f8*f11  = R = (ax - M*log2by64_hi) - M*log2by64_lo

{ .mfi
         nop.m 999
(p0)     fnma.s1           sinh_FR_R_temp = sinh_FR_M, sinh_FR_log2by64_hi, sinh_FR_X      
         nop.i 999
}

{ .mfi
(p0)     ldfe            sinh_FR_A2 = [r34],16            
         nop.f 999
         nop.i 999 ;;
}

{ .mfi
         nop.m 999
(p0)     fnma.s1           sinh_FR_R      = sinh_FR_M, sinh_FR_log2by64_lo, sinh_FR_R_temp 
         nop.i 999
}

// Get the B coefficients
// f15 = B_1
// f32 = B_2
// f33 = B_3

{ .mmi
(p0)     ldfe            sinh_FR_A3 = [r34],16 ;;            
(p0)     ldfe            sinh_FR_B1 = [r34],16            
         nop.i 999 ;;
}

{ .mmi
(p0)     ldfe            sinh_FR_B2 = [r34],16 ;;            
(p0)     ldfe            sinh_FR_B3 = [r34],16            
         nop.i 999 ;;
}

{ .mii
         nop.m 999
(p0)     shl            r34 = r36,  0x2 ;;   
(p0)     sxt1           r37 = r34 ;;         
}

// ******************************************************
// STEP 2 (TBL and EXP)
// ******************************************************
// Calculate Rsquared and Rcubed in preparation for p_even and p_odd
// f12 = R*R*R
// f13 = R*R
// f14 = R <== from above

{ .mfi
         nop.m 999
(p0)     fma.s1             sinh_FR_Rsq  = sinh_FR_R,   sinh_FR_R, f0  
(p0)     shr            r36 = r37,  0x2 ;;   
}

// r34 = M-j = r35 - r36
// r35 = N = (M-j)/64

{ .mii
(p0)     sub                  r34 = r35, r36    
         nop.i 999 ;;
(p0)     shr                  r35 = r34, 0x6 ;;    
}

{ .mii
(p0)     sub                 r40 = r38, r35           
(p0)     adds                 r37 = 0x1, r35    
(p0)     add                 r39 = r38, r35 ;;           
}

// Get the address of the J table, add the offset, 
// addresses are sinh_AD_mJ and sinh_AD_J, get the T value
// f32 = T(j)_hi
// f33 = T(j)_lo
// f34 = T(-j)_hi
// f35 = T(-j)_lo

{ .mmi
(p0)  sub                  r34 = r35, r32    
(p0)  addl           r37   = @ltoff(double_sinh_j_table), gp
      nop.i 999
}
;;

{ .mmi
      ld8 r37 = [r37]
      nop.m 999
      nop.i 999
}
;;


{ .mfi
         nop.m 999
(p0)     fma.s1             sinh_FR_Rcub = sinh_FR_Rsq, sinh_FR_R, f0  
         nop.i 999
}

// ******************************************************
// STEP 3 Now decide if we need to branch to EXP
// ******************************************************
// Put 32 in f9; p6 true if x < 32
// Go to EXP if |x| >= 32 

{ .mlx
         nop.m 999
(p0)     movl                r32 = 0x0000000000010004 ;;               
}

// Calculate p_even
// f34 = B_2 + Rsq *B_3
// f35 = B_1 + Rsq*f34      = B_1 + Rsq * (B_2 + Rsq *B_3)
// f36 = p_even = Rsq * f35 = Rsq * (B_1 + Rsq * (B_2 + Rsq *B_3))

{ .mfi
         nop.m 999
(p0)     fma.s1          sinh_FR_peven_temp1 = sinh_FR_Rsq, sinh_FR_B3,          sinh_FR_B2  
         nop.i 999 ;;
}

{ .mfi
         nop.m 999
(p0)     fma.s1          sinh_FR_peven_temp2 = sinh_FR_Rsq, sinh_FR_peven_temp1, sinh_FR_B1  
         nop.i 999
}

// Calculate p_odd
// f34 = A_2 + Rsq *A_3
// f35 = A_1 + Rsq * (A_2 + Rsq *A_3)
// f37 = podd = R + Rcub * (A_1 + Rsq * (A_2 + Rsq *A_3))

{ .mfi
         nop.m 999
(p0)     fma.s1          sinh_FR_podd_temp1 = sinh_FR_Rsq,        sinh_FR_A3,         sinh_FR_A2  
         nop.i 999 ;;
}

{ .mfi
(p0)     setf.exp            sinh_FR_N_temp1 = r39            
         nop.f 999
         nop.i 999 ;;
}

{ .mfi
         nop.m 999
(p0)     fma.s1          sinh_FR_peven       = sinh_FR_Rsq, sinh_FR_peven_temp2, f0     
         nop.i 999
}

{ .mfi
         nop.m 999
(p0)     fma.s1          sinh_FR_podd_temp2 = sinh_FR_Rsq,        sinh_FR_podd_temp1, sinh_FR_A1  
         nop.i 999 ;;
}

{ .mfi
(p0)     setf.exp            f9  = r32                              
         nop.f 999
         nop.i 999 ;;
}

{ .mfi
         nop.m 999
(p0)     fma.s1          sinh_FR_podd       = sinh_FR_podd_temp2, sinh_FR_Rcub,       sinh_FR_R   
         nop.i 999
}

// sinh_GR_mj contains the table offset for -j
// sinh_GR_j  contains the table offset for +j
// p6 is true when j <= 0

{ .mlx
(p0)     setf.exp            sinh_FR_N_temp2 = r40            
(p0)     movl                r40 = 0x0000000000000020 ;;    
}

{ .mfi
(p0)     sub                 sinh_GR_mJ = r40,  r36           
(p0)     fmerge.se           sinh_FR_spos    = sinh_FR_N_temp1, f1 
(p0)     adds                sinh_GR_J  = 0x20, r36 ;;           
}

{ .mii
         nop.m 999
(p0)     shl                  sinh_GR_mJ = sinh_GR_mJ, 5 ;;   
(p0)     add                  sinh_AD_mJ = r37, sinh_GR_mJ ;; 
}

{ .mmi
         nop.m 999
(p0)     ldfe                 sinh_FR_Tmjhi = [sinh_AD_mJ],16                 
(p0)     shl                  sinh_GR_J  = sinh_GR_J, 5 ;;    
}

{ .mfi
(p0)     ldfs                 sinh_FR_Tmjlo = [sinh_AD_mJ],16                 
(p0)     fcmp.lt.unc.s1      p0,p7 = sinh_FR_X,f9                          
(p0)     add                  sinh_AD_J  = r37, sinh_GR_J ;;  
}

{ .mmi
(p0)     ldfe                 sinh_FR_Tjhi  = [sinh_AD_J],16 ;;                  
(p0)     ldfs                 sinh_FR_Tjlo  = [sinh_AD_J],16                  
         nop.i 999 ;;
}

{ .mfb
         nop.m 999
(p0)     fmerge.se           sinh_FR_sneg    = sinh_FR_N_temp2, f1 
(p7)     br.cond.spnt        L(SINH_BY_EXP) ;;                            
}

{ .mfi
         nop.m 999
         nop.f 999
         nop.i 999 ;;
}

// ******************************************************
// If NOT branch to EXP
// ******************************************************
// Calculate S_hi and S_lo
// sinh_FR_S_hi_temp = sinh_FR_sneg * sinh_FR_Tmjhi
// sinh_FR_S_hi = sinh_FR_spos * sinh_FR_Tjhi - sinh_FR_S_hi_temp
// sinh_FR_S_hi = sinh_FR_spos * sinh_FR_Tjhi - (sinh_FR_sneg * sinh_FR_Tmjlo)

{ .mfi
         nop.m 999
(p0)    fma.s1         sinh_FR_S_hi_temp = sinh_FR_sneg, sinh_FR_Tmjhi, f0   
         nop.i 999 ;;
}

{ .mfi
         nop.m 999
(p0)    fms.s1         sinh_FR_S_hi = sinh_FR_spos, sinh_FR_Tjhi,  sinh_FR_S_hi_temp              
         nop.i 999
}

// Calculate C_hi
// sinh_FR_C_hi_temp1 = sinh_FR_sneg * sinh_FR_Tmjhi
// sinh_FR_C_hi = sinh_FR_spos * sinh_FR_Tjhi + sinh_FR_C_hi_temp1

{ .mfi
         nop.m 999
(p0)    fma.s1         sinh_FR_C_hi_temp1 = sinh_FR_sneg, sinh_FR_Tmjhi, f0                   
         nop.i 999 ;;
}

// sinh_FR_S_lo_temp1 =  sinh_FR_spos * sinh_FR_Tjhi - sinh_FR_S_hi
// sinh_FR_S_lo_temp2 = -sinh_FR_sneg * sinh_FR_Tmjlo + (sinh_FR_spos * sinh_FR_Tjhi - sinh_FR_S_hi)
// sinh_FR_S_lo_temp2 = -sinh_FR_sneg * sinh_FR_Tmjlo + (sinh_FR_S_lo_temp1              )

{ .mfi
         nop.m 999
(p0)    fms.s1         sinh_FR_S_lo_temp1 =  sinh_FR_spos, sinh_FR_Tjhi,  sinh_FR_S_hi            
         nop.i 999
}

{ .mfi
         nop.m 999
(p0)    fma.s1         sinh_FR_C_hi       = sinh_FR_spos, sinh_FR_Tjhi, sinh_FR_C_hi_temp1    
         nop.i 999 ;;
}

{ .mfi
         nop.m 999
(p0)    fnma.s1        sinh_FR_S_lo_temp2 = sinh_FR_sneg, sinh_FR_Tmjhi, sinh_FR_S_lo_temp1       
         nop.i 999
}

// sinh_FR_S_lo_temp1 = sinh_FR_sneg * sinh_FR_Tmjlo
// sinh_FR_S_lo_temp3 = sinh_FR_spos * sinh_FR_Tjlo - sinh_FR_S_lo_temp1
// sinh_FR_S_lo_temp3 = sinh_FR_spos * sinh_FR_Tjlo -(sinh_FR_sneg * sinh_FR_Tmjlo)
// sinh_FR_S_lo = sinh_FR_S_lo_temp3 + sinh_FR_S_lo_temp2

{ .mfi
         nop.m 999
(p0)    fma.s1         sinh_FR_S_lo_temp1 =  sinh_FR_sneg, sinh_FR_Tmjlo, f0                  
         nop.i 999 ;;
}

/////////// BUG FIX fma to fms -TK
{ .mfi
         nop.m 999
(p0)    fms.s1         sinh_FR_S_lo_temp3 =  sinh_FR_spos, sinh_FR_Tjlo,  sinh_FR_S_lo_temp1  
         nop.i 999 ;;
}

{ .mfi
         nop.m 999
(p0)    fma.s1         sinh_FR_S_lo       =  sinh_FR_S_lo_temp3, f1,   sinh_FR_S_lo_temp2     
         nop.i 999 ;;
}

// Y_hi = S_hi 
// Y_lo = C_hi*p_odd + (S_hi*p_even + S_lo)
// sinh_FR_Y_lo_temp = sinh_FR_S_hi * sinh_FR_peven + sinh_FR_S_lo
// sinh_FR_Y_lo      = sinh_FR_C_hi * sinh_FR_podd + sinh_FR_Y_lo_temp

{ .mfi
         nop.m 999
(p0)    fma.s1         sinh_FR_Y_lo_temp  = sinh_FR_S_hi, sinh_FR_peven, sinh_FR_S_lo           
         nop.i 999 ;;
}

{ .mfi
         nop.m 999
(p0)    fma.s1         sinh_FR_Y_lo       =  sinh_FR_C_hi, sinh_FR_podd, sinh_FR_Y_lo_temp      
         nop.i 999 ;;
}

// sinh_FR_SINH = Y_hi + Y_lo
// f8 = answer = sinh_FR_SGNX * sinh_FR_SINH

// Dummy multiply to generate inexact
{ .mfi
         nop.m 999
(p0)     fmpy.s0      sinh_FR_tmp = sinh_FR_all_ones, sinh_FR_all_ones
         nop.i 999
}
{ .mfi
         nop.m 999
(p0)    fma.s1         sinh_FR_SINH       =  sinh_FR_S_hi, f1, sinh_FR_Y_lo    
         nop.i 999 ;;
}

{ .mfb
         nop.m 999
(p0)    fma.s0       f8 = sinh_FR_SGNX, sinh_FR_SINH,f0                      
(p0)    br.ret.sptk     b0 ;;                          
}


L(SINH_BY_EXP): 

// When p7 is true,  we know that an overflow is not going to happen
// When p7 is false, we must check for possible overflow
// p7 is the over_SAFE flag
// Y_hi = Tjhi
// Y_lo = Tjhi * (p_odd + p_even) +Tjlo
// Scale = sign * 2^(N-1)
// sinh_FR_Y_lo =  sinh_FR_Tjhi * (sinh_FR_peven + sinh_FR_podd)
// sinh_FR_Y_lo =  sinh_FR_Tjhi * (sinh_FR_Y_lo_temp      )

{ .mfi
         nop.m 999
(p0)   fma.s1            sinh_FR_Y_lo_temp =  sinh_FR_peven, f1, sinh_FR_podd                   
         nop.i 999
}

// Now we are in EXP. This is the only path where an overflow is possible
// but not for certain. So this is the only path where over_SAFE has any use.
// r34 still has N-1
// There is a danger of double-extended overflow   if N-1 > 16382 = 0x3ffe
// There is a danger of double overflow            if N-1 > 0x3fe = 1022
{ .mlx
         nop.m 999
(p0)   movl                r32          = 0x0000000000003ffe ;;                       
}

{ .mfi
(p0)   cmp.gt.unc          p0,p7        = r34, r32                                 
(p0)   fmerge.s          sinh_FR_SCALE     = sinh_FR_SGNX, sinh_FR_spos                         
         nop.i 999 ;;
}

{ .mfi
         nop.m 999
(p0)   fma.s1            sinh_FR_Y_lo      =  sinh_FR_Tjhi,  sinh_FR_Y_lo_temp, sinh_FR_Tjlo    
         nop.i 999 ;;
}

// f8 = answer = scale * (Y_hi + Y_lo)
{ .mfi
         nop.m 999
(p0)   fma.s1            sinh_FR_SINH_temp = sinh_FR_Y_lo,  f1, sinh_FR_Tjhi       
         nop.i 999 ;;
}

{ .mfi
         nop.m 999
(p0)   fma.s0          f44          = sinh_FR_SCALE,  sinh_FR_SINH_temp, f0      
         nop.i 999 ;;
}

// Dummy multiply to generate inexact
{ .mfi
         nop.m 999
(p7)     fmpy.s0      sinh_FR_tmp = sinh_FR_all_ones, sinh_FR_all_ones
         nop.i 999 ;;
}

// If over_SAFE is set, return
{ .mfb
       nop.m 999
(p7)   fmerge.s            f8 = f44,f44                                            
(p7)   br.ret.sptk     b0 ;;                          
}

// Else see if we overflowed
// S0 user supplied status
// S2 user supplied status + WRE + TD  (Overflows)
// If WRE is set then an overflow will not occur in EXP.
// The input value that would cause a register (WRE) value to overflow is about 2^15
// and this input would go into the HUGE path.
// Answer with WRE is in f43.

{ .mfi
         nop.m 999
(p0)   fsetc.s2            0x7F,0x42                                               
         nop.i 999;;
}

{ .mfi
         nop.m 999
(p0)   fma.s2            f43  = sinh_FR_SCALE,  sinh_FR_SINH_temp, f0                      
         nop.i 999 ;;
}

// 13FFF => 13FFF -FFFF = 4000(true)
// 4000 + 3FFF = 7FFF, which is 1 more that the exponent of the largest
// long double (7FFE). So 0 13FFF 8000000000000000  is one ulp more than
// largest long double in register bias
// Now  set p8 if the answer with WRE is greater than or equal this value
// Also set p9 if the answer with WRE is less than or equal to negative this value

{ .mlx
         nop.m 999
(p0)   movl                r32     = 0x00000000013FFF ;;                              
}

{ .mmf
         nop.m 999
(p0)   setf.exp            f41 = r32                                               
(p0)   fsetc.s2            0x7F,0x40 ;;                                               
}

{ .mfi
         nop.m 999
(p0)   fcmp.ge.unc.s1 p8, p0 =  f43, f41                                           
         nop.i 999
}

{ .mfi
         nop.m 999
(p0)   fmerge.ns           f42 = f41, f41                                          
         nop.i 999 ;;
}

// The error tag for overflow is 126
{ .mii
         nop.m 999
         nop.i 999 ;;
(p8)   mov                 r47 = 126 ;;                                               
}

{ .mfb
         nop.m 999
(p0)   fcmp.le.unc.s1      p9, p0 =  f43, f42                                      
(p8)   br.cond.spnt L(SINH_ERROR_SUPPORT) ;;
}

{ .mii
         nop.m 999
         nop.i 999 ;;
(p9)   mov                 r47 = 126                                               
}

{ .mib
         nop.m 999
         nop.i 999
(p9)   br.cond.spnt L(SINH_ERROR_SUPPORT) ;;
}

// Dummy multiply to generate inexact
{ .mfi
         nop.m 999
(p0)     fmpy.s0      sinh_FR_tmp = sinh_FR_all_ones, sinh_FR_all_ones
         nop.i 999 ;;
}

{ .mfb
         nop.m 999
(p0)   fmerge.s            f8 = f44,f44                                            
(p0)   br.ret.sptk     b0 ;;                          
}

L(SINH_HUGE): 

// for SINH_HUGE, put 24000 in exponent; take sign from input; add 1
// SAFE: SAFE is always 0 for HUGE

{ .mlx
         nop.m 999
(p0)   movl                r32 = 0x0000000000015dbf ;;                                
}

{ .mfi
(p0)   setf.exp            f9  = r32                                               
         nop.f 999
         nop.i 999 ;;
}

{ .mfi
         nop.m 999
(p0)   fma.s1              sinh_FR_signed_hi_lo = sinh_FR_SGNX, f9, f1                       
         nop.i 999 ;;
}

{ .mfi
         nop.m 999
(p0)   fma.s0            f44 = sinh_FR_signed_hi_lo,  f9, f0                          
(p0)   mov                 r47 = 126                                               
}
.endp sinhl
ASM_SIZE_DIRECTIVE(sinhl)
#ifdef _LIBC
ASM_SIZE_DIRECTIVE(__ieee754_sinhl)
#endif

// Stack operations when calling error support.
//       (1)               (2)                          (3) (call)              (4)
//   sp   -> +          psp -> +                     psp -> +                   sp -> +
//           |                 |                            |                         |
//           |                 | <- GR_Y               R3 ->| <- GR_RESULT            | -> f8
//           |                 |                            |                         |
//           | <-GR_Y      Y2->|                       Y2 ->| <- GR_Y                 |
//           |                 |                            |                         |
//           |                 | <- GR_X               X1 ->|                         |
//           |                 |                            |                         |
//  sp-64 -> +          sp ->  +                     sp ->  +                         +
//    save ar.pfs          save b0                                               restore gp
//    save gp                                                                    restore ar.pfs

.proc __libm_error_region
__libm_error_region:
L(SINH_ERROR_SUPPORT):
.prologue

// (1)
{ .mfi
        add   GR_Parameter_Y=-32,sp             // Parameter 2 value
        nop.f 0
.save   ar.pfs,GR_SAVE_PFS
        mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
}
{ .mfi
.fframe 64
        add sp=-64,sp                          // Create new stack
        nop.f 0
        mov GR_SAVE_GP=gp                      // Save gp
};;


// (2)
{ .mmi
        stfe [GR_Parameter_Y] = f0,16         // STORE Parameter 2 on stack
        add GR_Parameter_X = 16,sp            // Parameter 1 address
.save   b0, GR_SAVE_B0
        mov GR_SAVE_B0=b0                     // Save b0
};;

.body
// (3)
{ .mib
        stfe [GR_Parameter_X] = f8                     // STORE Parameter 1 on stack
        add   GR_Parameter_RESULT = 0,GR_Parameter_Y   // Parameter 3 address
        nop.b 0                            
}
{ .mib
        stfe [GR_Parameter_Y] = f44                    // STORE Parameter 3 on stack
        add   GR_Parameter_Y = -16,GR_Parameter_Y
        br.call.sptk b0=__libm_error_support#          // Call error handling function
};;
{ .mmi
        nop.m 0
        nop.m 0
        add   GR_Parameter_RESULT = 48,sp
};;

// (4)
{ .mmi
        ldfe  f8 = [GR_Parameter_RESULT]       // Get return result off stack
.restore sp
        add   sp = 64,sp                       // Restore stack pointer
        mov   b0 = GR_SAVE_B0                  // Restore return address
};;
{ .mib
        mov   gp = GR_SAVE_GP                  // Restore gp
        mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
        br.ret.sptk     b0                     // Return
};;

.endp __libm_error_region
ASM_SIZE_DIRECTIVE(__libm_error_region)

.type   __libm_error_support#,@function
.global __libm_error_support#