about summary refs log tree commit diff
path: root/sysdeps/ia64/fpu/e_logf.S
blob: 3d11a296cc4a2a91e62d0b2275bc0c455e310144 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
.file "logf.s"


// Copyright (c) 2000 - 2005, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.

// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History
//==============================================================
// 03/01/00 Initial version
// 08/15/00 Bundle added after call to __libm_error_support to properly
//          set [the previously overwritten] GR_Parameter_RESULT.
// 01/10/01 Improved speed, fixed flags for neg denormals
// 05/20/02 Cleaned up namespace and sf0 syntax
// 05/23/02 Modified algorithm. Now only one polynomial is used
//          for |x-1| >= 1/256 and for |x-1| < 1/256
// 02/10/03 Reordered header: .section, .global, .proc, .align
// 03/31/05 Reformatted delimiters between data tables
//
// API
//==============================================================
// float logf(float)
// float log10f(float)
//
//
// Overview of operation
//==============================================================
// Background
// ----------
//
// This algorithm is based on fact that
// log(a b) = log(a) + log(b).
//
// In our case we have x = 2^N f, where 1 <= f < 2.
// So
//   log(x) = log(2^N f) = log(2^N) + log(f) = n*log(2) + log(f)
//
// To calculate log(f) we do following
//   log(f) = log(f * frcpa(f) / frcpa(f)) =
//          = log(f * frcpa(f)) + log(1/frcpa(f))
//
// According to definition of IA-64's frcpa instruction it's a
// floating point that approximates 1/f using a lookup on the
// top of 8 bits of the input number's significand with relative
// error < 2^(-8.886). So we have following
//
// |(1/f - frcpa(f)) / (1/f))| = |1 - f*frcpa(f)| < 1/256
//
// and
//
// log(f) = log(f * frcpa(f)) + log(1/frcpa(f)) =
//        = log(1 + r) + T
//
// The first value can be computed by polynomial P(r) approximating
// log(1 + r) on |r| < 1/256 and the second is precomputed tabular
// value defined by top 8 bit of f.
//
// Finally we have that  log(x) ~ (N*log(2) + T) + P(r)
//
// Note that if input argument is close to 1.0 (in our case it means
// that |1 - x| < 1/256) we can use just polynomial approximation
// because x = 2^0 * f = f = 1 + r and
// log(x) = log(1 + r) ~ P(r)
//
//
// To compute log10(x) we just use identity:
//
//  log10(x) = log(x)/log(10)
//
// so we have that
//
//  log10(x) = (N*log(2) + T  + log(1+r)) / log(10) =
//           = N*(log(2)/log(10)) + (T/log(10)) + log(1 + r)/log(10)
//
//
// Implementation
// --------------
// It can be seen that formulas for log and log10 differ from one another
// only by coefficients and tabular values. Namely as log as log10 are
// calculated as (N*L1 + T) + L2*Series(r) where in case of log
//   L1 = log(2)
//   T  = log(1/frcpa(x))
//   L2 = 1.0
// and in case of log10
//   L1 = log(2)/log(10)
//   T  = log(1/frcpa(x))/log(10)
//   L2 = 1.0/log(10)
//
// So common code with two different entry points those set pointers
// to the base address of coresponding data sets containing values
// of L2,T and prepare integer representation of L1 needed for following
// setf instruction can be used.
//
// Note that both log and log10 use common approximation polynomial
// it means we need only one set of coefficients of approximation.
//
// 1. Computation of log(x) for |x-1| >= 1/256
//   InvX = frcpa(x)
//   r = InvX*x - 1
//   P(r) = r*((1 - A2*r) + r^2*(A3 - A4*r)) = r*P2(r),
//   A4,A3,A2 are created with setf inctruction.
//   We use Taylor series and so A4 = 1/4, A3 = 1/3,
//   A2 = 1/2 rounded to double.
//
//   N = float(n) where n is true unbiased exponent of x
//
//   T is tabular value of log(1/frcpa(x)) calculated in quad precision
//   and rounded to double. To T we get bits from 55 to 62 of register
//   format significand of x and calculate address
//     ad_T = table_base_addr + 8 * index
//
//   L2 (1.0 or 1.0/log(10) depending on function) is calculated in quad
//   precision and rounded to double; it's loaded from memory
//
//   L1 (log(2) or log10(2) depending on function) is calculated in quad
//   precision and rounded to double; it's created with setf.
//
//   And final result = P2(r)*(r*L2) + (T + N*L1)
//
//
// 2. Computation of log(x) for |x-1| < 1/256
//   r = x - 1
//   P(r) = r*((1 - A2*r) + r^2*(A3 - A4*r)) = r*P2(r),
//   A4,A3,A2 are the same as in case |x-1| >= 1/256
//
//   And final result = P2(r)*(r*L2)
//
// 3. How we define is input argument such that |x-1| < 1/256 or not.
//
//    To do it we analyze biased exponent and significand of input argment.
//
//      a) First we test is biased exponent equal to 0xFFFE or 0xFFFF (i.e.
//         we test is 0.5 <= x < 2). This comparison can be performed using
//         unsigned version of cmp instruction in such a way
//         biased_exponent_of_x - 0xFFFE < 2
//
//
//      b) Second (in case when result of a) is true) we need to compare x
//         with 1-1/256 and 1+1/256 or in register format representation with
//         0xFFFEFF00000000000000 and 0xFFFF8080000000000000 correspondingly.
//         As far as biased exponent of x here can be equal only to 0xFFFE or
//         0xFFFF we need to test only last bit of it. Also signifigand always
//         has implicit bit set to 1 that can be exluded from comparison.
//         Thus it's quite enough to generate 64-bit integer bits of that are
//         ix[63] = biased_exponent_of_x[0] and ix[62-0] = significand_of_x[62-0]
//         and compare it with 0x7F00000000000000 and 0x80800000000000000 (those
//         obtained like ix from register representatinos of 255/256 and
//         257/256). This comparison can be made like in a), using unsigned
//         version of cmp i.e. ix - 0x7F00000000000000 < 0x0180000000000000.
//         0x0180000000000000 is difference between 0x80800000000000000 and
//         0x7F00000000000000.
//
//    Note: NaT, any NaNs, +/-INF, +/-0, negatives and unnormalized numbers are
//          filtered and processed on special branches.
//
//
// Special values
//==============================================================
//
// logf(+0)    = -inf
// logf(-0)    = -inf
//
// logf(+qnan) = +qnan
// logf(-qnan) = -qnan
// logf(+snan) = +qnan
// logf(-snan) = -qnan
//
// logf(-n)    = QNAN Indefinite
// logf(-inf)  = QNAN Indefinite
//
// logf(+inf)  = +inf
//
// Registers used
//==============================================================
// Floating Point registers used:
// f8, input
// f12 -> f14,  f33 -> f39
//
// General registers used:
// r8  -> r11
// r14 -> r19
//
// Predicate registers used:
// p6 -> p12


// Assembly macros
//==============================================================

GR_TAG                 = r8
GR_ad_T                = r8
GR_N                   = r9
GR_Exp                 = r10
GR_Sig                 = r11

GR_025                 = r14
GR_05                  = r15
GR_A3                  = r16
GR_Ind                 = r17
GR_dx                  = r15
GR_Ln2                 = r19
GR_de                  = r20
GR_x                   = r21
GR_xorg                = r22

GR_SAVE_B0             = r33
GR_SAVE_PFS            = r34
GR_SAVE_GP             = r35
GR_SAVE_SP             = r36

GR_Parameter_X         = r37
GR_Parameter_Y         = r38
GR_Parameter_RESULT    = r39
GR_Parameter_TAG       = r40


FR_A2                  = f12
FR_A3                  = f13
FR_A4                  = f14

FR_RcpX                = f33
FR_r                   = f34
FR_r2                  = f35
FR_tmp                 = f35
FR_Ln2                 = f36
FR_T                   = f37
FR_N                   = f38
FR_NxLn2pT             = f38
FR_NormX               = f39
FR_InvLn10             = f40


FR_Y                   = f1
FR_X                   = f10
FR_RESULT              = f8


// Data tables
//==============================================================
RODATA
.align 16
LOCAL_OBJECT_START(logf_data)
data8 0x3FF0000000000000 // 1.0
//
// ln(1/frcpa(1+i/256)), i=0...255
data8 0x3F60040155D5889E // 0
data8 0x3F78121214586B54 // 1
data8 0x3F841929F96832F0 // 2
data8 0x3F8C317384C75F06 // 3
data8 0x3F91A6B91AC73386 // 4
data8 0x3F95BA9A5D9AC039 // 5
data8 0x3F99D2A8074325F4 // 6
data8 0x3F9D6B2725979802 // 7
data8 0x3FA0C58FA19DFAAA // 8
data8 0x3FA2954C78CBCE1B // 9
data8 0x3FA4A94D2DA96C56 // 10
data8 0x3FA67C94F2D4BB58 // 11
data8 0x3FA85188B630F068 // 12
data8 0x3FAA6B8ABE73AF4C // 13
data8 0x3FAC441E06F72A9E // 14
data8 0x3FAE1E6713606D07 // 15
data8 0x3FAFFA6911AB9301 // 16
data8 0x3FB0EC139C5DA601 // 17
data8 0x3FB1DBD2643D190B // 18
data8 0x3FB2CC7284FE5F1C // 19
data8 0x3FB3BDF5A7D1EE64 // 20
data8 0x3FB4B05D7AA012E0 // 21
data8 0x3FB580DB7CEB5702 // 22
data8 0x3FB674F089365A7A // 23
data8 0x3FB769EF2C6B568D // 24
data8 0x3FB85FD927506A48 // 25
data8 0x3FB9335E5D594989 // 26
data8 0x3FBA2B0220C8E5F5 // 27
data8 0x3FBB0004AC1A86AC // 28
data8 0x3FBBF968769FCA11 // 29
data8 0x3FBCCFEDBFEE13A8 // 30
data8 0x3FBDA727638446A2 // 31
data8 0x3FBEA3257FE10F7A // 32
data8 0x3FBF7BE9FEDBFDE6 // 33
data8 0x3FC02AB352FF25F4 // 34
data8 0x3FC097CE579D204D // 35
data8 0x3FC1178E8227E47C // 36
data8 0x3FC185747DBECF34 // 37
data8 0x3FC1F3B925F25D41 // 38
data8 0x3FC2625D1E6DDF57 // 39
data8 0x3FC2D1610C86813A // 40
data8 0x3FC340C59741142E // 41
data8 0x3FC3B08B6757F2A9 // 42
data8 0x3FC40DFB08378003 // 43
data8 0x3FC47E74E8CA5F7C // 44
data8 0x3FC4EF51F6466DE4 // 45
data8 0x3FC56092E02BA516 // 46
data8 0x3FC5D23857CD74D5 // 47
data8 0x3FC6313A37335D76 // 48
data8 0x3FC6A399DABBD383 // 49
data8 0x3FC70337DD3CE41B // 50
data8 0x3FC77654128F6127 // 51
data8 0x3FC7E9D82A0B022D // 52
data8 0x3FC84A6B759F512F // 53
data8 0x3FC8AB47D5F5A310 // 54
data8 0x3FC91FE49096581B // 55
data8 0x3FC981634011AA75 // 56
data8 0x3FC9F6C407089664 // 57
data8 0x3FCA58E729348F43 // 58
data8 0x3FCABB55C31693AD // 59
data8 0x3FCB1E104919EFD0 // 60
data8 0x3FCB94EE93E367CB // 61
data8 0x3FCBF851C067555F // 62
data8 0x3FCC5C0254BF23A6 // 63
data8 0x3FCCC000C9DB3C52 // 64
data8 0x3FCD244D99C85674 // 65
data8 0x3FCD88E93FB2F450 // 66
data8 0x3FCDEDD437EAEF01 // 67
data8 0x3FCE530EFFE71012 // 68
data8 0x3FCEB89A1648B971 // 69
data8 0x3FCF1E75FADF9BDE // 70
data8 0x3FCF84A32EAD7C35 // 71
data8 0x3FCFEB2233EA07CD // 72
data8 0x3FD028F9C7035C1C // 73
data8 0x3FD05C8BE0D9635A // 74
data8 0x3FD085EB8F8AE797 // 75
data8 0x3FD0B9C8E32D1911 // 76
data8 0x3FD0EDD060B78081 // 77
data8 0x3FD122024CF0063F // 78
data8 0x3FD14BE2927AECD4 // 79
data8 0x3FD180618EF18ADF // 80
data8 0x3FD1B50BBE2FC63B // 81
data8 0x3FD1DF4CC7CF242D // 82
data8 0x3FD214456D0EB8D4 // 83
data8 0x3FD23EC5991EBA49 // 84
data8 0x3FD2740D9F870AFB // 85
data8 0x3FD29ECDABCDFA04 // 86
data8 0x3FD2D46602ADCCEE // 87
data8 0x3FD2FF66B04EA9D4 // 88
data8 0x3FD335504B355A37 // 89
data8 0x3FD360925EC44F5D // 90
data8 0x3FD38BF1C3337E75 // 91
data8 0x3FD3C25277333184 // 92
data8 0x3FD3EDF463C1683E // 93
data8 0x3FD419B423D5E8C7 // 94
data8 0x3FD44591E0539F49 // 95
data8 0x3FD47C9175B6F0AD // 96
data8 0x3FD4A8B341552B09 // 97
data8 0x3FD4D4F3908901A0 // 98
data8 0x3FD501528DA1F968 // 99
data8 0x3FD52DD06347D4F6 // 100
data8 0x3FD55A6D3C7B8A8A // 101
data8 0x3FD5925D2B112A59 // 102
data8 0x3FD5BF406B543DB2 // 103
data8 0x3FD5EC433D5C35AE // 104
data8 0x3FD61965CDB02C1F // 105
data8 0x3FD646A84935B2A2 // 106
data8 0x3FD6740ADD31DE94 // 107
data8 0x3FD6A18DB74A58C5 // 108
data8 0x3FD6CF31058670EC // 109
data8 0x3FD6F180E852F0BA // 110
data8 0x3FD71F5D71B894F0 // 111
data8 0x3FD74D5AEFD66D5C // 112
data8 0x3FD77B79922BD37E // 113
data8 0x3FD7A9B9889F19E2 // 114
data8 0x3FD7D81B037EB6A6 // 115
data8 0x3FD8069E33827231 // 116
data8 0x3FD82996D3EF8BCB // 117
data8 0x3FD85855776DCBFB // 118
data8 0x3FD8873658327CCF // 119
data8 0x3FD8AA75973AB8CF // 120
data8 0x3FD8D992DC8824E5 // 121
data8 0x3FD908D2EA7D9512 // 122
data8 0x3FD92C59E79C0E56 // 123
data8 0x3FD95BD750EE3ED3 // 124
data8 0x3FD98B7811A3EE5B // 125
data8 0x3FD9AF47F33D406C // 126
data8 0x3FD9DF270C1914A8 // 127
data8 0x3FDA0325ED14FDA4 // 128
data8 0x3FDA33440224FA79 // 129
data8 0x3FDA57725E80C383 // 130
data8 0x3FDA87D0165DD199 // 131
data8 0x3FDAAC2E6C03F896 // 132
data8 0x3FDADCCC6FDF6A81 // 133
data8 0x3FDB015B3EB1E790 // 134
data8 0x3FDB323A3A635948 // 135
data8 0x3FDB56FA04462909 // 136
data8 0x3FDB881AA659BC93 // 137
data8 0x3FDBAD0BEF3DB165 // 138
data8 0x3FDBD21297781C2F // 139
data8 0x3FDC039236F08819 // 140
data8 0x3FDC28CB1E4D32FD // 141
data8 0x3FDC4E19B84723C2 // 142
data8 0x3FDC7FF9C74554C9 // 143
data8 0x3FDCA57B64E9DB05 // 144
data8 0x3FDCCB130A5CEBB0 // 145
data8 0x3FDCF0C0D18F326F // 146
data8 0x3FDD232075B5A201 // 147
data8 0x3FDD490246DEFA6B // 148
data8 0x3FDD6EFA918D25CD // 149
data8 0x3FDD9509707AE52F // 150
data8 0x3FDDBB2EFE92C554 // 151
data8 0x3FDDEE2F3445E4AF // 152
data8 0x3FDE148A1A2726CE // 153
data8 0x3FDE3AFC0A49FF40 // 154
data8 0x3FDE6185206D516E // 155
data8 0x3FDE882578823D52 // 156
data8 0x3FDEAEDD2EAC990C // 157
data8 0x3FDED5AC5F436BE3 // 158
data8 0x3FDEFC9326D16AB9 // 159
data8 0x3FDF2391A2157600 // 160
data8 0x3FDF4AA7EE03192D // 161
data8 0x3FDF71D627C30BB0 // 162
data8 0x3FDF991C6CB3B379 // 163
data8 0x3FDFC07ADA69A910 // 164
data8 0x3FDFE7F18EB03D3E // 165
data8 0x3FE007C053C5002E // 166
data8 0x3FE01B942198A5A1 // 167
data8 0x3FE02F74400C64EB // 168
data8 0x3FE04360BE7603AD // 169
data8 0x3FE05759AC47FE34 // 170
data8 0x3FE06B5F1911CF52 // 171
data8 0x3FE078BF0533C568 // 172
data8 0x3FE08CD9687E7B0E // 173
data8 0x3FE0A10074CF9019 // 174
data8 0x3FE0B5343A234477 // 175
data8 0x3FE0C974C89431CE // 176
data8 0x3FE0DDC2305B9886 // 177
data8 0x3FE0EB524BAFC918 // 178
data8 0x3FE0FFB54213A476 // 179
data8 0x3FE114253DA97D9F // 180
data8 0x3FE128A24F1D9AFF // 181
data8 0x3FE1365252BF0865 // 182
data8 0x3FE14AE558B4A92D // 183
data8 0x3FE15F85A19C765B // 184
data8 0x3FE16D4D38C119FA // 185
data8 0x3FE18203C20DD133 // 186
data8 0x3FE196C7BC4B1F3B // 187
data8 0x3FE1A4A738B7A33C // 188
data8 0x3FE1B981C0C9653D // 189
data8 0x3FE1CE69E8BB106B // 190
data8 0x3FE1DC619DE06944 // 191
data8 0x3FE1F160A2AD0DA4 // 192
data8 0x3FE2066D7740737E // 193
data8 0x3FE2147DBA47A394 // 194
data8 0x3FE229A1BC5EBAC3 // 195
data8 0x3FE237C1841A502E // 196
data8 0x3FE24CFCE6F80D9A // 197
data8 0x3FE25B2C55CD5762 // 198
data8 0x3FE2707F4D5F7C41 // 199
data8 0x3FE285E0842CA384 // 200
data8 0x3FE294294708B773 // 201
data8 0x3FE2A9A2670AFF0C // 202
data8 0x3FE2B7FB2C8D1CC1 // 203
data8 0x3FE2C65A6395F5F5 // 204
data8 0x3FE2DBF557B0DF43 // 205
data8 0x3FE2EA64C3F97655 // 206
data8 0x3FE3001823684D73 // 207
data8 0x3FE30E97E9A8B5CD // 208
data8 0x3FE32463EBDD34EA // 209
data8 0x3FE332F4314AD796 // 210
data8 0x3FE348D90E7464D0 // 211
data8 0x3FE35779F8C43D6E // 212
data8 0x3FE36621961A6A99 // 213
data8 0x3FE37C299F3C366A // 214
data8 0x3FE38AE2171976E7 // 215
data8 0x3FE399A157A603E7 // 216
data8 0x3FE3AFCCFE77B9D1 // 217
data8 0x3FE3BE9D503533B5 // 218
data8 0x3FE3CD7480B4A8A3 // 219
data8 0x3FE3E3C43918F76C // 220
data8 0x3FE3F2ACB27ED6C7 // 221
data8 0x3FE4019C2125CA93 // 222
data8 0x3FE4181061389722 // 223
data8 0x3FE42711518DF545 // 224
data8 0x3FE436194E12B6BF // 225
data8 0x3FE445285D68EA69 // 226
data8 0x3FE45BCC464C893A // 227
data8 0x3FE46AED21F117FC // 228
data8 0x3FE47A1527E8A2D3 // 229
data8 0x3FE489445EFFFCCC // 230
data8 0x3FE4A018BCB69835 // 231
data8 0x3FE4AF5A0C9D65D7 // 232
data8 0x3FE4BEA2A5BDBE87 // 233
data8 0x3FE4CDF28F10AC46 // 234
data8 0x3FE4DD49CF994058 // 235
data8 0x3FE4ECA86E64A684 // 236
data8 0x3FE503C43CD8EB68 // 237
data8 0x3FE513356667FC57 // 238
data8 0x3FE522AE0738A3D8 // 239
data8 0x3FE5322E26867857 // 240
data8 0x3FE541B5CB979809 // 241
data8 0x3FE55144FDBCBD62 // 242
data8 0x3FE560DBC45153C7 // 243
data8 0x3FE5707A26BB8C66 // 244
data8 0x3FE587F60ED5B900 // 245
data8 0x3FE597A7977C8F31 // 246
data8 0x3FE5A760D634BB8B // 247
data8 0x3FE5B721D295F10F // 248
data8 0x3FE5C6EA94431EF9 // 249
data8 0x3FE5D6BB22EA86F6 // 250
data8 0x3FE5E6938645D390 // 251
data8 0x3FE5F673C61A2ED2 // 252
data8 0x3FE6065BEA385926 // 253
data8 0x3FE6164BFA7CC06B // 254
data8 0x3FE62643FECF9743 // 255
LOCAL_OBJECT_END(logf_data)

LOCAL_OBJECT_START(log10f_data)
data8 0x3FDBCB7B1526E50E // 1/ln(10)
//
// ln(1/frcpa(1+i/256))/ln(10), i=0...255
data8 0x3F4BD27045BFD025 // 0
data8 0x3F64E84E793A474A // 1
data8 0x3F7175085AB85FF0 // 2
data8 0x3F787CFF9D9147A5 // 3
data8 0x3F7EA9D372B89FC8 // 4
data8 0x3F82DF9D95DA961C // 5
data8 0x3F866DF172D6372C // 6
data8 0x3F898D79EF5EEDF0 // 7
data8 0x3F8D22ADF3F9579D // 8
data8 0x3F9024231D30C398 // 9
data8 0x3F91F23A98897D4A // 10
data8 0x3F93881A7B818F9E // 11
data8 0x3F951F6E1E759E35 // 12
data8 0x3F96F2BCE7ADC5B4 // 13
data8 0x3F988D362CDF359E // 14
data8 0x3F9A292BAF010982 // 15
data8 0x3F9BC6A03117EB97 // 16
data8 0x3F9D65967DE3AB09 // 17
data8 0x3F9F061167FC31E8 // 18
data8 0x3FA05409E4F7819C // 19
data8 0x3FA125D0432EA20E // 20
data8 0x3FA1F85D440D299B // 21
data8 0x3FA2AD755749617D // 22
data8 0x3FA381772A00E604 // 23
data8 0x3FA45643E165A70B // 24
data8 0x3FA52BDD034475B8 // 25
data8 0x3FA5E3966B7E9295 // 26
data8 0x3FA6BAAF47C5B245 // 27
data8 0x3FA773B3E8C4F3C8 // 28
data8 0x3FA84C51EBEE8D15 // 29
data8 0x3FA906A6786FC1CB // 30
data8 0x3FA9C197ABF00DD7 // 31
data8 0x3FAA9C78712191F7 // 32
data8 0x3FAB58C09C8D637C // 33
data8 0x3FAC15A8BCDD7B7E // 34
data8 0x3FACD331E2C2967C // 35
data8 0x3FADB11ED766ABF4 // 36
data8 0x3FAE70089346A9E6 // 37
data8 0x3FAF2F96C6754AEE // 38
data8 0x3FAFEFCA8D451FD6 // 39
data8 0x3FB0585283764178 // 40
data8 0x3FB0B913AAC7D3A7 // 41
data8 0x3FB11A294F2569F6 // 42
data8 0x3FB16B51A2696891 // 43
data8 0x3FB1CD03ADACC8BE // 44
data8 0x3FB22F0BDD7745F5 // 45
data8 0x3FB2916ACA38D1E8 // 46
data8 0x3FB2F4210DF7663D // 47
data8 0x3FB346A6C3C49066 // 48
data8 0x3FB3A9FEBC60540A // 49
data8 0x3FB3FD0C10A3AA54 // 50
data8 0x3FB46107D3540A82 // 51
data8 0x3FB4C55DD16967FE // 52
data8 0x3FB51940330C000B // 53
data8 0x3FB56D620EE7115E // 54
data8 0x3FB5D2ABCF26178E // 55
data8 0x3FB6275AA5DEBF81 // 56
data8 0x3FB68D4EAF26D7EE // 57
data8 0x3FB6E28C5C54A28D // 58
data8 0x3FB7380B9665B7C8 // 59
data8 0x3FB78DCCC278E85B // 60
data8 0x3FB7F50C2CF2557A // 61
data8 0x3FB84B5FD5EAEFD8 // 62
data8 0x3FB8A1F6BAB2B226 // 63
data8 0x3FB8F8D144557BDF // 64
data8 0x3FB94FEFDCD61D92 // 65
data8 0x3FB9A752EF316149 // 66
data8 0x3FB9FEFAE7611EE0 // 67
data8 0x3FBA56E8325F5C87 // 68
data8 0x3FBAAF1B3E297BB4 // 69
data8 0x3FBB079479C372AD // 70
data8 0x3FBB6054553B12F7 // 71
data8 0x3FBBB95B41AB5CE6 // 72
data8 0x3FBC12A9B13FE079 // 73
data8 0x3FBC6C4017382BEA // 74
data8 0x3FBCB41FBA42686D // 75
data8 0x3FBD0E38CE73393F // 76
data8 0x3FBD689B2193F133 // 77
data8 0x3FBDC3472B1D2860 // 78
data8 0x3FBE0C06300D528B // 79
data8 0x3FBE6738190E394C // 80
data8 0x3FBEC2B50D208D9B // 81
data8 0x3FBF0C1C2B936828 // 82
data8 0x3FBF68216C9CC727 // 83
data8 0x3FBFB1F6381856F4 // 84
data8 0x3FC00742AF4CE5F8 // 85
data8 0x3FC02C64906512D2 // 86
data8 0x3FC05AF1E63E03B4 // 87
data8 0x3FC0804BEA723AA9 // 88
data8 0x3FC0AF1FD6711527 // 89
data8 0x3FC0D4B2A8805A00 // 90
data8 0x3FC0FA5EF136A06C // 91
data8 0x3FC1299A4FB3E306 // 92
data8 0x3FC14F806253C3ED // 93
data8 0x3FC175805D1587C1 // 94
data8 0x3FC19B9A637CA295 // 95
data8 0x3FC1CB5FC26EDE17 // 96
data8 0x3FC1F1B4E65F2590 // 97
data8 0x3FC218248B5DC3E5 // 98
data8 0x3FC23EAED62ADC76 // 99
data8 0x3FC26553EBD337BD // 100
data8 0x3FC28C13F1B11900 // 101
data8 0x3FC2BCAA14381386 // 102
data8 0x3FC2E3A740B7800F // 103
data8 0x3FC30ABFD8F333B6 // 104
data8 0x3FC331F403985097 // 105
data8 0x3FC35943E7A60690 // 106
data8 0x3FC380AFAC6E7C07 // 107
data8 0x3FC3A8377997B9E6 // 108
data8 0x3FC3CFDB771C9ADB // 109
data8 0x3FC3EDA90D39A5DF // 110
data8 0x3FC4157EC09505CD // 111
data8 0x3FC43D7113FB04C1 // 112
data8 0x3FC4658030AD1CCF // 113
data8 0x3FC48DAC404638F6 // 114
data8 0x3FC4B5F56CBBB869 // 115
data8 0x3FC4DE5BE05E7583 // 116
data8 0x3FC4FCBC0776FD85 // 117
data8 0x3FC525561E9256EE // 118
data8 0x3FC54E0DF3198865 // 119
data8 0x3FC56CAB7112BDE2 // 120
data8 0x3FC59597BA735B15 // 121
data8 0x3FC5BEA23A506FDA // 122
data8 0x3FC5DD7E08DE382F // 123
data8 0x3FC606BDD3F92355 // 124
data8 0x3FC6301C518A501F // 125
data8 0x3FC64F3770618916 // 126
data8 0x3FC678CC14C1E2D8 // 127
data8 0x3FC6981005ED2947 // 128
data8 0x3FC6C1DB5F9BB336 // 129
data8 0x3FC6E1488ECD2881 // 130
data8 0x3FC70B4B2E7E41B9 // 131
data8 0x3FC72AE209146BF9 // 132
data8 0x3FC7551C81BD8DCF // 133
data8 0x3FC774DD76CC43BE // 134
data8 0x3FC79F505DB00E88 // 135
data8 0x3FC7BF3BDE099F30 // 136
data8 0x3FC7E9E7CAC437F9 // 137
data8 0x3FC809FE4902D00D // 138
data8 0x3FC82A2757995CBE // 139
data8 0x3FC85525C625E098 // 140
data8 0x3FC8757A79831887 // 141
data8 0x3FC895E2058D8E03 // 142
data8 0x3FC8C13437695532 // 143
data8 0x3FC8E1C812EF32BE // 144
data8 0x3FC9026F112197E8 // 145
data8 0x3FC923294888880B // 146
data8 0x3FC94EEA4B8334F3 // 147
data8 0x3FC96FD1B639FC09 // 148
data8 0x3FC990CCA66229AC // 149
data8 0x3FC9B1DB33334843 // 150
data8 0x3FC9D2FD740E6607 // 151
data8 0x3FC9FF49EEDCB553 // 152
data8 0x3FCA209A84FBCFF8 // 153
data8 0x3FCA41FF1E43F02B // 154
data8 0x3FCA6377D2CE9378 // 155
data8 0x3FCA8504BAE0D9F6 // 156
data8 0x3FCAA6A5EEEBEFE3 // 157
data8 0x3FCAC85B878D7879 // 158
data8 0x3FCAEA259D8FFA0B // 159
data8 0x3FCB0C0449EB4B6B // 160
data8 0x3FCB2DF7A5C50299 // 161
data8 0x3FCB4FFFCA70E4D1 // 162
data8 0x3FCB721CD17157E3 // 163
data8 0x3FCB944ED477D4ED // 164
data8 0x3FCBB695ED655C7D // 165
data8 0x3FCBD8F2364AEC0F // 166
data8 0x3FCBFB63C969F4FF // 167
data8 0x3FCC1DEAC134D4E9 // 168
data8 0x3FCC4087384F4F80 // 169
data8 0x3FCC6339498F09E2 // 170
data8 0x3FCC86010FFC076C // 171
data8 0x3FCC9D3D065C5B42 // 172
data8 0x3FCCC029375BA07A // 173
data8 0x3FCCE32B66978BA4 // 174
data8 0x3FCD0643AFD51404 // 175
data8 0x3FCD29722F0DEA45 // 176
data8 0x3FCD4CB70070FE44 // 177
data8 0x3FCD6446AB3F8C96 // 178
data8 0x3FCD87B0EF71DB45 // 179
data8 0x3FCDAB31D1FE99A7 // 180
data8 0x3FCDCEC96FDC888F // 181
data8 0x3FCDE6908876357A // 182
data8 0x3FCE0A4E4A25C200 // 183
data8 0x3FCE2E2315755E33 // 184
data8 0x3FCE461322D1648A // 185
data8 0x3FCE6A0E95C7787B // 186
data8 0x3FCE8E216243DD60 // 187
data8 0x3FCEA63AF26E007C // 188
data8 0x3FCECA74ED15E0B7 // 189
data8 0x3FCEEEC692CCD25A // 190
data8 0x3FCF070A36B8D9C1 // 191
data8 0x3FCF2B8393E34A2D // 192
data8 0x3FCF5014EF538A5B // 193
data8 0x3FCF68833AF1B180 // 194
data8 0x3FCF8D3CD9F3F04F // 195
data8 0x3FCFA5C61ADD93E9 // 196
data8 0x3FCFCAA8567EBA7A // 197
data8 0x3FCFE34CC8743DD8 // 198
data8 0x3FD0042BFD74F519 // 199
data8 0x3FD016BDF6A18017 // 200
data8 0x3FD023262F907322 // 201
data8 0x3FD035CCED8D32A1 // 202
data8 0x3FD042430E869FFC // 203
data8 0x3FD04EBEC842B2E0 // 204
data8 0x3FD06182E84FD4AC // 205
data8 0x3FD06E0CB609D383 // 206
data8 0x3FD080E60BEC8F12 // 207
data8 0x3FD08D7E0D894735 // 208
data8 0x3FD0A06CC96A2056 // 209
data8 0x3FD0AD131F3B3C55 // 210
data8 0x3FD0C01771E775FB // 211
data8 0x3FD0CCCC3CAD6F4B // 212
data8 0x3FD0D986D91A34A9 // 213
data8 0x3FD0ECA9B8861A2D // 214
data8 0x3FD0F972F87FF3D6 // 215
data8 0x3FD106421CF0E5F7 // 216
data8 0x3FD11983EBE28A9D // 217
data8 0x3FD12661E35B785A // 218
data8 0x3FD13345D2779D3B // 219
data8 0x3FD146A6F597283A // 220
data8 0x3FD15399E81EA83D // 221
data8 0x3FD16092E5D3A9A6 // 222
data8 0x3FD17413C3B7AB5E // 223
data8 0x3FD1811BF629D6FB // 224
data8 0x3FD18E2A47B46686 // 225
data8 0x3FD19B3EBE1A4418 // 226
data8 0x3FD1AEE9017CB450 // 227
data8 0x3FD1BC0CED7134E2 // 228
data8 0x3FD1C93712ABC7FF // 229
data8 0x3FD1D66777147D3F // 230
data8 0x3FD1EA3BD1286E1C // 231
data8 0x3FD1F77BED932C4C // 232
data8 0x3FD204C25E1B031F // 233
data8 0x3FD2120F28CE69B1 // 234
data8 0x3FD21F6253C48D01 // 235
data8 0x3FD22CBBE51D60AA // 236
data8 0x3FD240CE4C975444 // 237
data8 0x3FD24E37F8ECDAE8 // 238
data8 0x3FD25BA8215AF7FC // 239
data8 0x3FD2691ECC29F042 // 240
data8 0x3FD2769BFFAB2E00 // 241
data8 0x3FD2841FC23952C9 // 242
data8 0x3FD291AA1A384978 // 243
data8 0x3FD29F3B0E15584B // 244
data8 0x3FD2B3A0EE479DF7 // 245
data8 0x3FD2C142842C09E6 // 246
data8 0x3FD2CEEACCB7BD6D // 247
data8 0x3FD2DC99CE82FF21 // 248
data8 0x3FD2EA4F902FD7DA // 249
data8 0x3FD2F80C186A25FD // 250
data8 0x3FD305CF6DE7B0F7 // 251
data8 0x3FD3139997683CE7 // 252
data8 0x3FD3216A9BB59E7C // 253
data8 0x3FD32F4281A3CEFF // 254
data8 0x3FD33D2150110092 // 255
LOCAL_OBJECT_END(log10f_data)


// Code
//==============================================================
.section .text

// logf   has p13 true, p14 false
// log10f has p14 true, p13 false

GLOBAL_IEEE754_ENTRY(log10f)
{ .mfi
      getf.exp      GR_Exp = f8 // if x is unorm then must recompute
      frcpa.s1      FR_RcpX,p0 = f1,f8
      mov           GR_05 = 0xFFFE // biased exponent of A2=0.5
}
{ .mlx
      addl          GR_ad_T = @ltoff(log10f_data),gp
      movl          GR_A3 = 0x3FD5555555555555 // double precision memory
                                               // representation of A3
};;
{ .mfi
      getf.sig      GR_Sig = f8 // if x is unorm then must recompute
      fclass.m      p8,p0 = f8,9 // is x positive unorm?
      sub           GR_025 = GR_05,r0,1 // biased exponent of A4=0.25
}
{ .mlx
      ld8           GR_ad_T = [GR_ad_T]
      movl          GR_Ln2 = 0x3FD34413509F79FF // double precision memory
                                                // representation of
                                                // log(2)/ln(10)
};;
{ .mfi
      setf.d        FR_A3 = GR_A3 // create A3
      fcmp.eq.s1    p14,p13 = f0,f0 // set p14 to 1 for log10f
      dep.z         GR_xorg = GR_05,55,8 // 0x7F00000000000000 integer number
                                         // bits of that are
                                         // GR_xorg[63]   = last bit of biased
                                         //            exponent of 255/256
                                         // GR_xorg[62-0] = bits from 62 to 0
                                         //            of significand of 255/256
}
{ .mib
      setf.exp      FR_A2 = GR_05 // create A2
      sub           GR_de = GR_Exp,GR_05 // biased_exponent_of_x - 0xFFFE
                                         // needed to comparion with 0.5 and 2.0
      br.cond.sptk  logf_log10f_common
};;
GLOBAL_IEEE754_END(log10f)

GLOBAL_IEEE754_ENTRY(logf)
{ .mfi
      getf.exp      GR_Exp = f8 // if x is unorm then must recompute
      frcpa.s1      FR_RcpX,p0 = f1,f8
      mov           GR_05 = 0xFFFE // biased exponent of A2=-0.5
}
{ .mlx
      addl          GR_ad_T = @ltoff(logf_data),gp
      movl          GR_A3 = 0x3FD5555555555555 // double precision memory
                                               // representation of A3
};;
{ .mfi
      getf.sig      GR_Sig = f8 // if x is unorm then must recompute
      fclass.m      p8,p0 = f8,9 // is x positive unorm?
      dep.z         GR_xorg = GR_05,55,8 // 0x7F00000000000000 integer number
                                         // bits of that are
                                         // GR_xorg[63]   = last bit of biased
                                         //            exponent of 255/256
                                         // GR_xorg[62-0] = bits from 62 to 0
                                         //            of significand of 255/256
}
{ .mfi
      ld8           GR_ad_T = [GR_ad_T]
      nop.f         0
      sub           GR_025 = GR_05,r0,1 // biased exponent of A4=0.25
};;
{ .mfi
      setf.d        FR_A3 = GR_A3 // create A3
      fcmp.eq.s1    p13,p14 = f0,f0 // p13 - true for logf
      sub           GR_de = GR_Exp,GR_05 // biased_exponent_of_x - 0xFFFE
                                         // needed to comparion with 0.5 and 2.0
}
{ .mlx
      setf.exp      FR_A2 = GR_05 // create A2
      movl          GR_Ln2 = 0x3FE62E42FEFA39EF // double precision memory
                                                // representation of log(2)
};;
logf_log10f_common:
{ .mfi
      setf.exp      FR_A4 = GR_025 // create A4=0.25
      fclass.m      p9,p0 = f8,0x3A // is x < 0 (including negateve unnormals)?
      dep           GR_x = GR_Exp,GR_Sig,63,1 // produce integer that bits are
                                              // GR_x[63] = GR_Exp[0]
                                              // GR_x[62-0] = GR_Sig[62-0]
}
{ .mib
      sub           GR_N = GR_Exp,GR_05,1 // unbiased exponent of x
      cmp.gtu       p6,p7 = 2,GR_de // is 0.5 <= x < 2.0?
(p8)  br.cond.spnt  logf_positive_unorm
};;
logf_core:
{ .mfi
      setf.sig      FR_N = GR_N // copy unbiased exponent of x to the
                                // significand field of FR_N
      fclass.m      p10,p0 = f8,0x1E1 // is x NaN, NaT or +Inf?
      dep.z         GR_dx = GR_05,54,3 // 0x0180000000000000 - difference
                                       // between our integer representations
                                       // of 257/256 and 255/256
}
{ .mfi
      nop.m         0
      nop.f         0
      sub           GR_x = GR_x,GR_xorg // difference between representations
                                        // of x and 255/256
};;
{ .mfi
      ldfd          FR_InvLn10 = [GR_ad_T],8
      fcmp.eq.s1    p11,p0 = f8,f1 // is x equal to 1.0?
      extr.u        GR_Ind = GR_Sig,55,8 // get bits from 55 to 62 as index
}
{ .mib
      setf.d        FR_Ln2 = GR_Ln2 // create log(2) or log10(2)
(p6)  cmp.gtu       p6,p7 = GR_dx,GR_x // set p6 if 255/256 <= x < 257/256
(p9)  br.cond.spnt  logf_negatives // jump if input argument is negative number
};;
// p6 is true if |x-1| < 1/256
// p7 is true if |x-1| >= 1/256
.pred.rel "mutex",p6,p7
{ .mfi
      shladd        GR_ad_T = GR_Ind,3,GR_ad_T // calculate address of T
(p7)  fms.s1        FR_r = FR_RcpX,f8,f1 // range reduction for |x-1|>=1/256
      extr.u        GR_Exp = GR_Exp,0,17 // exponent without sign
}
{ .mfb
      nop.m         0
(p6)  fms.s1        FR_r = f8,f1,f1 // range reduction for |x-1|<1/256
(p10) br.cond.spnt  logf_nan_nat_pinf // exit for NaN, NaT or +Inf
};;
{ .mfb
      ldfd          FR_T = [GR_ad_T] // load T
(p11) fma.s.s0      f8 = f0,f0,f0
(p11) br.ret.spnt   b0 // exit for x = 1.0
};;
{ .mib
      nop.m         0
      cmp.eq        p12,p0 = r0,GR_Exp // is x +/-0? (here it's quite enough
                                       // only to compare exponent with 0
                                       // because all unnormals already
                                       // have been filtered)
(p12) br.cond.spnt  logf_zeroes        // Branch if input argument is +/-0
};;
{ .mfi
      nop.m         0
      fnma.s1       FR_A2 = FR_A2,FR_r,f1 // A2*r+1
      nop.i         0
}
{ .mfi
      nop.m         0
      fma.s1        FR_r2 = FR_r,FR_r,f0  // r^2
      nop.i         0
};;
{ .mfi
      nop.m         0
      fcvt.xf       FR_N = FR_N // convert integer N in significand of FR_N
                                // to floating-point representation
      nop.i         0
}
{ .mfi
      nop.m         0
      fnma.s1       FR_A3 = FR_A4,FR_r,FR_A3 // A4*r+A3
      nop.i         0
};;
{ .mfi
      nop.m         0
      fma.s1        FR_r = FR_r,FR_InvLn10,f0 // For log10f we have r/log(10)
      nop.i         0
}
{ .mfi
      nop.m         0
      nop.f         0
      nop.i         0
};;
{ .mfi
      nop.m         0
      fma.s1        FR_A2 = FR_A3,FR_r2,FR_A2 // (A4*r+A3)*r^2+(A2*r+1)
      nop.i         0
}
{ .mfi
      nop.m         0
      fma.s1        FR_NxLn2pT = FR_N,FR_Ln2,FR_T // N*Ln2+T
      nop.i         0
};;
.pred.rel "mutex",p6,p7
{ .mfi
      nop.m         0
(p7)  fma.s.s0      f8 = FR_A2,FR_r,FR_NxLn2pT // result for |x-1|>=1/256
      nop.i         0
}
{ .mfb
      nop.m         0
(p6)  fma.s.s0      f8 = FR_A2,FR_r,f0 // result for |x-1|<1/256
      br.ret.sptk   b0
};;

.align 32
logf_positive_unorm:
{ .mfi
      nop.m         0
(p8)  fma.s0        f8 = f8,f1,f0 // Normalize & set D-flag
      nop.i         0
};;
{ .mfi
      getf.exp      GR_Exp = f8    // recompute biased exponent
      nop.f         0
      cmp.ne        p6,p7 = r0,r0  // p6 <- 0, p7 <- 1 because
                                   // in case of unorm we are out
                                   // interval [255/256; 257/256]
};;
{ .mfi
      getf.sig      GR_Sig = f8 // recompute significand
      nop.f         0
      nop.i         0
};;
{ .mib
      sub           GR_N = GR_Exp,GR_05,1 // unbiased exponent N
      nop.i         0
      br.cond.sptk  logf_core // return into main path
};;

.align 32
logf_nan_nat_pinf:
{ .mfi
      nop.m         0
      fma.s.s0      f8 = f8,f1,f0 // set V-flag
      nop.i         0
}
{ .mfb
      nop.m         0
      nop.f         0
      br.ret.sptk   b0 // exit for NaN, NaT or +Inf
};;

.align 32
logf_zeroes:
{ .mfi
      nop.m         0
      fmerge.s      FR_X = f8,f8 // keep input argument for subsequent
                                 // call of __libm_error_support#
      nop.i         0
}
{ .mfi
(p13) mov           GR_TAG = 4 // set libm error in case of logf
      fms.s1        FR_tmp = f0,f0,f1 // -1.0
      nop.i         0
};;
{ .mfi
      nop.m         0
      frcpa.s0      f8,p0 = FR_tmp,f0 // log(+/-0) should be equal to -INF.
                                      // We can get it using frcpa because it
                                      // sets result to the IEEE-754 mandated
                                      // quotient of FR_tmp/f0.
                                      // As far as FR_tmp is -1 it'll be -INF
      nop.i         0
}
{ .mib
(p14) mov           GR_TAG = 10 // set libm error in case of log10f
      nop.i         0
      br.cond.sptk  logf_libm_err
};;

.align 32
logf_negatives:
{ .mfi
(p13) mov           GR_TAG = 5 // set libm error in case of logf
      fmerge.s      FR_X = f8,f8 // keep input argument for subsequent
                                 // call of __libm_error_support#
      nop.i         0
};;
{ .mfi
(p14) mov           GR_TAG = 11 // set libm error in case of log10f
      frcpa.s0      f8,p0 = f0,f0 // log(negatives) should be equal to NaN.
                                  // We can get it using frcpa because it
                                  // sets result to the IEEE-754 mandated
                                  // quotient of f0/f0 i.e. NaN.
      nop.i         0
};;

.align 32
logf_libm_err:
{ .mmi
      alloc         r32 = ar.pfs,1,4,4,0
      mov           GR_Parameter_TAG = GR_TAG
      nop.i         0
};;
GLOBAL_IEEE754_END(logf)


// Stack operations when calling error support.
//       (1)               (2)                          (3) (call)              (4)
//   sp   -> +          psp -> +                     psp -> +                   sp -> +
//           |                 |                            |                         |
//           |                 | <- GR_Y               R3 ->| <- GR_RESULT            | -> f8
//           |                 |                            |                         |
//           | <-GR_Y      Y2->|                       Y2 ->| <- GR_Y                 |
//           |                 |                            |                         |
//           |                 | <- GR_X               X1 ->|                         |
//           |                 |                            |                         |
//  sp-64 -> +          sp ->  +                     sp ->  +                         +
//    save ar.pfs          save b0                                               restore gp
//    save gp                                                                    restore ar.pfs

LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
{ .mfi
      add   GR_Parameter_Y=-32,sp             // Parameter 2 value
      nop.f 0
.save ar.pfs,GR_SAVE_PFS
      mov  GR_SAVE_PFS=ar.pfs                 // Save ar.pfs
}
{ .mfi
.fframe 64
      add sp=-64,sp                           // Create new stack
      nop.f 0
      mov GR_SAVE_GP=gp                       // Save gp
};;
{ .mmi
      stfs [GR_Parameter_Y] = FR_Y,16         // STORE Parameter 2 on stack
      add GR_Parameter_X = 16,sp              // Parameter 1 address
.save   b0, GR_SAVE_B0
      mov GR_SAVE_B0=b0                       // Save b0
};;
.body
{ .mib
      stfs [GR_Parameter_X] = FR_X                  // STORE Parameter 1 on stack
      add   GR_Parameter_RESULT = 0,GR_Parameter_Y  // Parameter 3 address
      nop.b 0
}
{ .mib
      stfs [GR_Parameter_Y] = FR_RESULT             // STORE Parameter 3 on stack
      add   GR_Parameter_Y = -16,GR_Parameter_Y
      br.call.sptk b0=__libm_error_support#         // Call error handling function
};;
{ .mmi
      nop.m 0
      nop.m 0
      add   GR_Parameter_RESULT = 48,sp
};;
{ .mmi
      ldfs  f8 = [GR_Parameter_RESULT]       // Get return result off stack
.restore sp
      add   sp = 64,sp                       // Restore stack pointer
      mov   b0 = GR_SAVE_B0                  // Restore return address
};;
{ .mib
      mov   gp = GR_SAVE_GP                  // Restore gp
      mov   ar.pfs = GR_SAVE_PFS             // Restore ar.pfs
      br.ret.sptk     b0                     // Return
};;

LOCAL_LIBM_END(__libm_error_region)

.type   __libm_error_support#,@function
.global __libm_error_support#