1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
|
.file "exp10l.s"
// Copyright (c) 2000 - 2004, Intel Corporation
// All rights reserved.
//
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History
//==============================================================
// 08/25/00 Initial version
// 05/20/02 Cleaned up namespace and sf0 syntax
// 02/06/03 Reordered header: .section, .global, .proc, .align
// 05/08/03 Reformatted assembly source; corrected overflow result for round to
// -inf and round to zero; exact results now don't set inexact flag
// 12/16/04 Call error handling on underflow.
//
// API
//==============================================================
// long double exp10l(long double)
//
// Overview of operation
//==============================================================
// Background
//
// Implementation
//
// Let x= (K + f + r)/log2(10), where
// K is an integer, f= 0.b1 b2... b8 (f>= 0),
// and |r|<2^{-9}
// T is a table that stores 2^f (256 entries) rounded to
// double extended precision (only mantissa is stored)
// D stores (2^f/T [ f ] - 1), rounded to single precision
//
// 10^x is approximated as
// 2^K * T [ f ] * ((1+c1*r+c2*r^2+...+c6*r^6)*(1+c1*e)+D [ f ] ),
// where e= log2(10)_lo*x+(log2(10)_hi*x-RN(log2(10)_hi*x))
//
// Special values
//==============================================================
// exp10(0)= 1
// exp10(+inf)= inf
// exp10(-inf)= 0
//
// Registers used
//==============================================================
// f6-f15, f32-f63
// r14-r30, r32-r40
// p6-p8, p11-p14
//
FR_X = f10
FR_Y = f1
FR_RESULT = f8
FR_COEFF1 = f6
FR_COEFF2 = f7
FR_KF0 = f9
FR_LOG10 = f10
FR_CONST1 = f11
FR_XL10 = f12
FR_COEFF3 = f13
FR_COEFF4 = f14
FR_UF_TEST = f15
FR_OF_TEST = f32
FR_L10_LOW = f33
FR_COEFF5 = f34
FR_COEFF6 = f35
FR_L10 = f36
FR_C_L10 = f37
FR_XL10_H = f38
FR_XL10_L = f39
FR_KF = f40
FR_E = f41
FR_T = f42
FR_D = f43
FR_EXP_M_63 = f44
FR_R = f45
FR_E1 = f46
FR_COEFF2 = f47
FR_P34 = f48
FR_P56 = f49
FR_R2 = f50
FR_RE = f51
FR_D1 = f52
FR_P36 = f53
FR_R3E = f54
FR_P1 = f55
FR_P = f56
FR_T1 = f57
FR_XINT = f58
FR_XINTF = f59
FR_4 = f60
FR_28 = f61
FR_32 = f62
FR_SNORM_LIMIT = f63
GR_ADDR0 = r14
GR_D_ADDR = r15
GR_ADDR = r16
GR_B63 = r17
GR_KBITS = r18
GR_F = r19
GR_K = r20
GR_D = r21
GR_BM63 = r22
GR_T = r23
GR_CONST1 = r24
GR_EMIN = r25
GR_CONST2 = r26
GR_BM8 = r27
GR_SREG = r28
GR_4_BIAS = r29
GR_32_BIAS = r30
GR_SAVE_B0 = r33
GR_SAVE_PFS = r34
GR_SAVE_GP = r35
GR_SAVE_SP = r36
GR_Parameter_X = r37
GR_Parameter_Y = r38
GR_Parameter_RESULT= r39
GR_Parameter_TAG = r40
// Data tables
//==============================================================
RODATA
.align 16
LOCAL_OBJECT_START(poly_coeffs)
data8 0xd49a784bcd1b8afe, 0x00004008 // log2(10)*2^8
data8 0x9a209a84fbcff798, 0x0000400b // overflow threshold
data8 0xb17217f7d1cf79ab, 0x00003ffe // C_1
data8 0xf5fdeffc162c7541, 0x00003ffc // C_2
data8 0x3fac6b08d704a0c0 // C_3
data8 0x3f83b2ab6fba4e77 // C_4
data8 0x3f55d87fe78a6731 // C_5
data8 0x3f2430912f86c787 // C_6
data8 0x9257edfe9b5fb698, 0x00003fbf // log2(10)_low (bits 64...127)
data8 0x9a1bc98027a81918, 0x0000c00b // Smallest normal threshold
LOCAL_OBJECT_END(poly_coeffs)
LOCAL_OBJECT_START(T_table)
// 2^{0.b1 b2 b3 b4 b5 b6 b7 b8}
data8 0x8000000000000000, 0x8058d7d2d5e5f6b1
data8 0x80b1ed4fd999ab6c, 0x810b40a1d81406d4
data8 0x8164d1f3bc030773, 0x81bea1708dde6056
data8 0x8218af4373fc25ec, 0x8272fb97b2a5894c
data8 0x82cd8698ac2ba1d7, 0x83285071e0fc4547
data8 0x8383594eefb6ee37, 0x83dea15b9541b132
data8 0x843a28c3acde4046, 0x8495efb3303efd30
data8 0x84f1f656379c1a29, 0x854e3cd8f9c8c95d
data8 0x85aac367cc487b15, 0x86078a2f23642a9f
data8 0x8664915b923fba04, 0x86c1d919caef5c88
data8 0x871f61969e8d1010, 0x877d2afefd4e256c
data8 0x87db357ff698d792, 0x88398146b919f1d4
data8 0x88980e8092da8527, 0x88f6dd5af155ac6b
data8 0x8955ee03618e5fdd, 0x89b540a7902557a4
data8 0x8a14d575496efd9a, 0x8a74ac9a79896e47
data8 0x8ad4c6452c728924, 0x8b3522a38e1e1032
data8 0x8b95c1e3ea8bd6e7, 0x8bf6a434adde0085
data8 0x8c57c9c4646f4dde, 0x8cb932c1bae97a95
data8 0x8d1adf5b7e5ba9e6, 0x8d7ccfc09c50e2f8
data8 0x8ddf042022e69cd6, 0x8e417ca940e35a01
data8 0x8ea4398b45cd53c0, 0x8f073af5a2013520
data8 0x8f6a8117e6c8e5c4, 0x8fce0c21c6726481
data8 0x9031dc431466b1dc, 0x9095f1abc540ca6b
data8 0x90fa4c8beee4b12b, 0x915eed13c89689d3
data8 0x91c3d373ab11c336, 0x9228ffdc10a051ad
data8 0x928e727d9531f9ac, 0x92f42b88f673aa7c
data8 0x935a2b2f13e6e92c, 0x93c071a0eef94bc1
data8 0x9426ff0fab1c04b6, 0x948dd3ac8ddb7ed3
data8 0x94f4efa8fef70961, 0x955c5336887894d5
data8 0x95c3fe86d6cc7fef, 0x962bf1cbb8d97560
data8 0x96942d3720185a00, 0x96fcb0fb20ac4ba3
data8 0x97657d49f17ab08e, 0x97ce9255ec4357ab
data8 0x9837f0518db8a96f, 0x98a1976f7597e996
data8 0x990b87e266c189aa, 0x9975c1dd47518c77
data8 0x99e0459320b7fa65, 0x9a4b13371fd166ca
data8 0x9ab62afc94ff864a, 0x9b218d16f441d63d
data8 0x9b8d39b9d54e5539, 0x9bf93118f3aa4cc1
data8 0x9c6573682ec32c2d, 0x9cd200db8a0774cb
data8 0x9d3ed9a72cffb751, 0x9dabfdff6367a2aa
data8 0x9e196e189d472420, 0x9e872a276f0b98ff
data8 0x9ef5326091a111ae, 0x9f6386f8e28ba651
data8 0x9fd228256400dd06, 0xa041161b3d0121be
data8 0xa0b0510fb9714fc2, 0xa11fd9384a344cf7
data8 0xa18faeca8544b6e4, 0xa1ffd1fc25cea188
data8 0xa27043030c496819, 0xa2e102153e918f9e
data8 0xa3520f68e802bb93, 0xa3c36b345991b47c
data8 0xa43515ae09e6809e, 0xa4a70f0c95768ec5
data8 0xa5195786be9ef339, 0xa58bef536dbeb6ee
data8 0xa5fed6a9b15138ea, 0xa6720dc0be08a20c
data8 0xa6e594cfeee86b1e, 0xa7596c0ec55ff55b
data8 0xa7cd93b4e965356a, 0xa8420bfa298f70d1
data8 0xa8b6d5167b320e09, 0xa92bef41fa77771b
data8 0xa9a15ab4ea7c0ef8, 0xaa1717a7b5693979
data8 0xaa8d2652ec907629, 0xab0386ef48868de1
data8 0xab7a39b5a93ed337, 0xabf13edf162675e9
data8 0xac6896a4be3fe929, 0xace0413ff83e5d04
data8 0xad583eea42a14ac6, 0xadd08fdd43d01491
data8 0xae493452ca35b80e, 0xaec22c84cc5c9465
data8 0xaf3b78ad690a4375, 0xafb51906e75b8661
data8 0xb02f0dcbb6e04584, 0xb0a957366fb7a3c9
data8 0xb123f581d2ac2590, 0xb19ee8e8c94feb09
data8 0xb21a31a66618fe3b, 0xb295cff5e47db4a4
data8 0xb311c412a9112489, 0xb38e0e38419fae18
data8 0xb40aaea2654b9841, 0xb487a58cf4a9c180
data8 0xb504f333f9de6484, 0xb58297d3a8b9f0d2
data8 0xb60093a85ed5f76c, 0xb67ee6eea3b22b8f
data8 0xb6fd91e328d17791, 0xb77c94c2c9d725e9
data8 0xb7fbefca8ca41e7c, 0xb87ba337a1743834
data8 0xb8fbaf4762fb9ee9, 0xb97c143756844dbf
data8 0xb9fcd2452c0b9deb, 0xba7de9aebe5fea09
data8 0xbaff5ab2133e45fb, 0xbb81258d5b704b6f
data8 0xbc034a7ef2e9fb0d, 0xbc85c9c560e7b269
data8 0xbd08a39f580c36bf, 0xbd8bd84bb67ed483
data8 0xbe0f6809860993e2, 0xbe935317fc378238
data8 0xbf1799b67a731083, 0xbf9c3c248e2486f8
data8 0xc0213aa1f0d08db0, 0xc0a6956e8836ca8d
data8 0xc12c4cca66709456, 0xc1b260f5ca0fbb33
data8 0xc238d2311e3d6673, 0xc2bfa0bcfad907c9
data8 0xc346ccda24976407, 0xc3ce56c98d21b15d
data8 0xc4563ecc5334cb33, 0xc4de8523c2c07baa
data8 0xc5672a115506dadd, 0xc5f02dd6b0bbc3d9
data8 0xc67990b5aa245f79, 0xc70352f04336c51e
data8 0xc78d74c8abb9b15d, 0xc817f681416452b2
data8 0xc8a2d85c8ffe2c45, 0xc92e1a9d517f0ecc
data8 0xc9b9bd866e2f27a3, 0xca45c15afcc72624
data8 0xcad2265e4290774e, 0xcb5eecd3b38597c9
data8 0xcbec14fef2727c5d, 0xcc799f23d11510e5
data8 0xcd078b86503dcdd2, 0xcd95da6a9ff06445
data8 0xce248c151f8480e4, 0xceb3a0ca5dc6a55d
data8 0xcf4318cf191918c1, 0xcfd2f4683f94eeb5
data8 0xd06333daef2b2595, 0xd0f3d76c75c5db8d
data8 0xd184df6251699ac6, 0xd2164c023056bcab
data8 0xd2a81d91f12ae45a, 0xd33a5457a3029054
data8 0xd3ccf099859ac379, 0xd45ff29e0972c561
data8 0xd4f35aabcfedfa1f, 0xd5872909ab75d18a
data8 0xd61b5dfe9f9bce07, 0xd6aff9d1e13ba2fe
data8 0xd744fccad69d6af4, 0xd7da67311797f56a
data8 0xd870394c6db32c84, 0xd9067364d44a929c
data8 0xd99d15c278afd7b6, 0xda3420adba4d8704
data8 0xdacb946f2ac9cc72, 0xdb63714f8e295255
data8 0xdbfbb797daf23755, 0xdc9467913a4f1c92
data8 0xdd2d818508324c20, 0xddc705bcd378f7f0
data8 0xde60f4825e0e9124, 0xdefb4e1f9d1037f2
data8 0xdf9612deb8f04420, 0xe031430a0d99e627
data8 0xe0ccdeec2a94e111, 0xe168e6cfd3295d23
data8 0xe2055afffe83d369, 0xe2a23bc7d7d91226
data8 0xe33f8972be8a5a51, 0xe3dd444c46499619
data8 0xe47b6ca0373da88d, 0xe51a02ba8e26d681
data8 0xe5b906e77c8348a8, 0xe658797368b3a717
data8 0xe6f85aaaee1fce22, 0xe798aadadd5b9cbf
data8 0xe8396a503c4bdc68, 0xe8da9958464b42ab
data8 0xe97c38406c4f8c57, 0xea1e4756550eb27b
data8 0xeac0c6e7dd24392f, 0xeb63b74317369840
data8 0xec0718b64c1cbddc, 0xecaaeb8ffb03ab41
data8 0xed4f301ed9942b84, 0xedf3e6b1d418a491
data8 0xee990f980da3025b, 0xef3eab20e032bc6b
data8 0xefe4b99bdcdaf5cb, 0xf08b3b58cbe8b76a
data8 0xf13230a7ad094509, 0xf1d999d8b7708cc1
data8 0xf281773c59ffb13a, 0xf329c9233b6bae9c
data8 0xf3d28fde3a641a5b, 0xf47bcbbe6db9fddf
data8 0xf5257d152486cc2c, 0xf5cfa433e6537290
data8 0xf67a416c733f846e, 0xf7255510c4288239
data8 0xf7d0df730ad13bb9, 0xf87ce0e5b2094d9c
data8 0xf92959bb5dd4ba74, 0xf9d64a46eb939f35
data8 0xfa83b2db722a033a, 0xfb3193cc4227c3f4
data8 0xfbdfed6ce5f09c49, 0xfc8ec01121e447bb
data8 0xfd3e0c0cf486c175, 0xfdedd1b496a89f35
data8 0xfe9e115c7b8f884c, 0xff4ecb59511ec8a5
LOCAL_OBJECT_END(T_table)
LOCAL_OBJECT_START(D_table)
data4 0x00000000, 0x9f55c08f, 0x1e93ffa3, 0x1dcd43a8
data4 0x1f751f79, 0x9f3cdd88, 0x9f43d155, 0x1eda222c
data4 0x1ef35513, 0x9f597895, 0x9e698881, 0x1ec71073
data4 0x1e50e371, 0x9dc01e19, 0x1de74133, 0x1e2f028c
data4 0x9edefb47, 0x1ebbac48, 0x9e8b0330, 0x9e9e9314
data4 0x1edc1d11, 0x1f098529, 0x9f52827c, 0x1f50050d
data4 0x1f301e8e, 0x1f5b64d1, 0x9f45e3ee, 0x9ef64d6d
data4 0x1d6ec5e8, 0x9e61ad9a, 0x1d44ccbb, 0x9e4a8bbb
data4 0x9cf11576, 0x9dcce7e7, 0x9d02ac90, 0x1f26ccf0
data4 0x9f0877c6, 0x9ddd62ae, 0x9f4b7fc3, 0x1ea8ef6b
data4 0x1ea4378d, 0x1ef6fc38, 0x1db99fd9, 0x1f22bf6f
data4 0x1f53e172, 0x1e85504a, 0x9f37cc75, 0x1f0c5e17
data4 0x1dde8aac, 0x9cb42bb2, 0x1e153cd7, 0x1eb62bba
data4 0x9e9b941b, 0x9ea80e3c, 0x1f508823, 0x1ec3fd36
data4 0x1e9ffaa1, 0x1e21e2eb, 0x9d948b1d, 0x9e8ac93a
data4 0x1ef7ee6f, 0x9e80dda3, 0x1f0814be, 0x1dc5ddfe
data4 0x1eedb9d1, 0x9f2aaa26, 0x9ea5b0fc, 0x1edf702e
data4 0x9e391201, 0x1f1316bb, 0x1ea27fb7, 0x9e05ed18
data4 0x9f199ed2, 0x1ee7fd7c, 0x1f003db6, 0x9eac3793
data4 0x9e5b8c10, 0x9f3af17c, 0x1bc9a8be, 0x1ee3c004
data4 0x9f19b1b2, 0x9f242ce9, 0x9ce67dd1, 0x9e4f6275
data4 0x1e20742c, 0x1eb9328a, 0x9f477153, 0x1d969718
data4 0x9f1e6c43, 0x1f2f67f4, 0x9f39c7e4, 0x9e3c4feb
data4 0x1da3956b, 0x9e7c685d, 0x1f280911, 0x9f0d8afb
data4 0x1e314b40, 0x9eb4f250, 0x9f1a34ad, 0x1ef5d5e7
data4 0x9f145496, 0x1e604827, 0x9f1e5195, 0x1e9c1fc0
data4 0x1efde521, 0x1e69b385, 0x1f316830, 0x9f244eae
data4 0x1f1787ec, 0x9e939971, 0x1f0bb393, 0x9f0511d6
data4 0x1ed919de, 0x1d8b7b28, 0x1e5ca4a9, 0x1e7c357b
data4 0x9e3ff8e8, 0x1eef53b5, 0x9ed22ed7, 0x1f16659b
data4 0x9f2db102, 0x9e2c6a78, 0x1f328d7d, 0x9f2fec3c
data4 0x1eb395bd, 0x9f242b84, 0x9e2683e6, 0x1ed71e68
data4 0x1efd1df5, 0x9e9eeafd, 0x9ed2249c, 0x1eef129a
data4 0x1d1ea44c, 0x9e81f7ff, 0x1eaf77c9, 0x9ee7a285
data4 0x1e1864ed, 0x9ee7edbb, 0x9e15a27d, 0x9ae61655
data4 0x1f1ff1a2, 0x1da29755, 0x9e5f46fb, 0x1e901236
data4 0x9eecfb9b, 0x9f204d2f, 0x1ec64685, 0x9eb809bd
data4 0x9e0026c5, 0x1d9f1da1, 0x1f142b49, 0x9f20f22e
data4 0x1f24b067, 0x1f185a4c, 0x9f09765c, 0x9ece902f
data4 0x1e2ca5db, 0x1e6de464, 0x9f071f67, 0x1f1518c3
data4 0x1ea13ded, 0x1f0b8414, 0x1edb6ad4, 0x9e548740
data4 0x9ea10efb, 0x1ee48a60, 0x1e7954c5, 0x9edad013
data4 0x9f21517d, 0x9e9b6e0c, 0x9ee7f9a6, 0x9ebd4298
data4 0x9d65b24e, 0x1eed751f, 0x9f1573ea, 0x9d430377
data4 0x9e13fc0c, 0x1e47008a, 0x1e3d5c1d, 0x1ef41a91
data4 0x9e4a4ef7, 0x9e952f18, 0x1d620566, 0x1d9b8d33
data4 0x1db06247, 0x1e94b31e, 0x1f0730ad, 0x9d79ffb4
data4 0x1ed64d51, 0x9e91fd11, 0x9e28d35a, 0x9dea0ed9
data4 0x1e891def, 0x9ee28ac0, 0x1e1db99b, 0x9ee1ce38
data4 0x9bdd9bca, 0x1eb72cb9, 0x9e8c53c6, 0x1e0df6ca
data4 0x1e8f2ccd, 0x9e9b0886, 0x1eeb3bc7, 0x1ec7e772
data4 0x9e210776, 0x9daf246c, 0x1ea1f151, 0x1ece4dc6
data4 0x1ce741c8, 0x1ed3c88f, 0x9ec9a4fd, 0x9e0c8d30
data4 0x1d2fbb26, 0x9ef212a7, 0x1ee44f1c, 0x9e445550
data4 0x1e075f77, 0x9d9291a3, 0x1f09c2ee, 0x9e012c88
data4 0x1f057d62, 0x9e7bb0dc, 0x9d8758ee, 0x1ee8d6c1
data4 0x9e509a57, 0x9e4ca7b7, 0x1e2cb341, 0x9ec35106
data4 0x1ecf3baf, 0x1e11781c, 0x1ea0cc78, 0x1eb75ca6
data4 0x1e961e1a, 0x1eb88853, 0x1e7abf50, 0x1ee38704
data4 0x9dc5ab0f, 0x1afe197b, 0x9ec07523, 0x9d9b7f78
data4 0x1f011618, 0x1ed43b0b, 0x9f035945, 0x9e3fd014
data4 0x9bbda5cd, 0x9e83f8ab, 0x1e58a928, 0x1e392d61
data4 0x1efdbb52, 0x1ee310a8, 0x9ec7ecc1, 0x1e8c9ed6
data4 0x9ef82dee, 0x9e70545b, 0x9ea53fc4, 0x1e40f419
LOCAL_OBJECT_END(D_table)
.section .text
GLOBAL_IEEE754_ENTRY(exp10l)
{.mfi
alloc GR_SREG = ar.pfs, 1, 4, 4, 0
// will continue only for normal/denormal numbers
fclass.nm.unc p12, p7 = f8, 0x1b
// GR_ADDR0 = pointer to log2(10), C_1...C_6 followed by T_table
addl GR_ADDR0 = @ltoff(poly_coeffs), gp ;;
}
{.mfi
// load start address for C_1...C_6 followed by T_table
ld8 GR_ADDR0 = [ GR_ADDR0 ]
// X<0 ?
fcmp.lt.s1 p6, p8 = f8, f0
// GR_BM8 = bias-8
mov GR_BM8 = 0xffff-8
}
{.mlx
nop.m 0
// GR_EMIN = (-2^14-62)*2^{8}
movl GR_EMIN = 0xca807c00 ;;
}
{.mmb
// FR_CONST1 = 2^{-8}
setf.exp FR_CONST1 = GR_BM8
// load log2(10)*2^8
ldfe FR_LOG10 = [ GR_ADDR0 ], 16
(p12) br.cond.spnt SPECIAL_EXP10 ;;
}
{.mmf
setf.s FR_UF_TEST = GR_EMIN
// load overflow threshold
ldfe FR_OF_TEST = [ GR_ADDR0 ], 16
// normalize x
fma.s0 f8 = f8, f1, f0 ;;
}
{.mmi
// load C_1
ldfe FR_COEFF1 = [ GR_ADDR0 ], 16 ;;
// load C_2
ldfe FR_COEFF2 = [ GR_ADDR0 ], 16
nop.i 0 ;;
}
{.mmf
// GR_D_ADDR = pointer to D table
add GR_D_ADDR = 2048-64+96+32, GR_ADDR0
// load C_3, C_4
ldfpd FR_COEFF3, FR_COEFF4 = [ GR_ADDR0 ], 16
// y = x*log2(10)*2^8
fma.s1 FR_XL10 = f8, FR_LOG10, f0 ;;
}
{.mfi
// load C_5, C_6
ldfpd FR_COEFF5, FR_COEFF6 = [ GR_ADDR0 ], 16
// get int(x)
fcvt.fx.trunc.s1 FR_XINT = f8
nop.i 0
}
{.mfi
nop.m 0
// FR_LOG10 = log2(10)
fma.s1 FR_L10 = FR_LOG10, FR_CONST1, f0
nop.i 0 ;;
}
{.mfi
// load log2(10)_low
ldfe FR_L10_LOW = [ GR_ADDR0 ], 16
// y0 = x*log2(10) = x*log2(10)_hi
fma.s1 FR_LOG10 = f8, FR_L10, f0
mov GR_EMIN = 0xffff-63
}
{.mfi
mov GR_32_BIAS = 0xffff + 5
// (K+f)*2^8 = round_to_int(y)
fcvt.fx.s1 FR_KF0 = FR_XL10
mov GR_4_BIAS = 0xffff + 2;;
}
{.mfi
// load smallest normal limit
ldfe FR_SNORM_LIMIT = [ GR_ADDR0 ], 16
// x>overflow threshold ?
fcmp.gt.s1 p12, p7 = f8, FR_OF_TEST
nop.i 0 ;;
}
{.mfi
setf.exp FR_32 = GR_32_BIAS
// x<underflow threshold ?
(p7) fcmp.lt.s1 p12, p7 = FR_XL10, FR_UF_TEST
nop.i 0 ;;
}
{.mfi
setf.exp FR_4 = GR_4_BIAS
fcvt.xf FR_XINTF = FR_XINT
nop.i 0
}
{.mfi
nop.m 0
// FR_L10 = log2(10)_h*x-RN(log2(10)_h*x)
fms.s1 FR_L10 = f8, FR_L10, FR_LOG10
nop.i 0 ;;
}
{.mfi
getf.sig GR_BM8 = FR_KF0
fcvt.xf FR_KF0 = FR_KF0
mov GR_CONST2 = 255 ;;
}
{.mfi
// GR_CONST2 = f
and GR_CONST2 = GR_CONST2, GR_BM8
// FR_L10_LOW = e = log2(10)_l*x+(log2(10)_h*x-RN(log2(10)_h*x))
fma.s1 FR_L10_LOW = FR_L10_LOW, f8, FR_L10
// GR_BM8 = K
shr GR_BM8 = GR_BM8, 8 ;;
}
{.mmi
// address of D
shladd GR_D_ADDR = GR_CONST2, 2, GR_D_ADDR
// K+ = bias-63
add GR_BM8 = GR_BM8, GR_EMIN
// address of T
shladd GR_ADDR0 = GR_CONST2, 3, GR_ADDR0 ;;
}
{.mfb
// load D
ldfs FR_OF_TEST = [ GR_D_ADDR ]
// is input an integer ?
fcmp.eq.s1 p13, p14 = f8, FR_XINTF
(p12) br.cond.spnt OUT_RANGE_EXP10 ;;
}
{.mmf
// load T
ldf8 FR_UF_TEST = [ GR_ADDR0 ]
// FR_XL10 = 2^{K-63}
setf.exp FR_XL10 = GR_BM8
// r = x*log2(10)_hi-2^{-10}* [ (K+f)*2^{10} ]
fnma.s1 FR_KF0 = FR_KF0, FR_CONST1, FR_LOG10 ;;
}
{.mfi
nop.m 0
// get 28.0
fms.s1 FR_28 = FR_32, f1, FR_4
nop.i 0
}
{.mfi
nop.m 0
// E = 1+C_1*e
fma.s1 FR_L10 = FR_L10_LOW, FR_COEFF1, f1
nop.i 0 ;;
}
{.mfi
nop.m 0
// P12 = C_1+C_2*r
fma.s1 FR_COEFF2 = FR_COEFF2, FR_KF0, FR_COEFF1
nop.i 0
}
{.mfi
nop.m 0
// P34 = C_3+C_4*r
fma.s1 FR_COEFF4 = FR_COEFF4, FR_KF0, FR_COEFF3
nop.i 0 ;;
}
{.mfi
nop.m 0
// P56 = C_5+C_6*r
fma.s1 FR_COEFF5 = FR_COEFF6, FR_KF0, FR_COEFF5
nop.i 0
}
{.mfi
nop.m 0
// GR_ADDR0 = r*r
fma.s1 FR_COEFF3 = FR_KF0, FR_KF0, f0
nop.i 0 ;;
}
{.mfi
nop.m 0
// if input is integer, is it positive ?
(p13) fcmp.ge.s1 p13, p14 = f8, f0
nop.i 0
}
{.mfi
nop.m 0
// r' = r*E
fma.s1 FR_KF0 = FR_KF0, FR_L10, f0
nop.i 0 ;;
}
{.mfi
nop.m 0
// D' = D+C_1*e
fma.s1 FR_OF_TEST = FR_L10_LOW, FR_COEFF1, FR_OF_TEST
nop.i 0 ;;
}
{.mfi
nop.m 0
// test if x >= smallest normal limit
fcmp.ge.s1 p11, p0 = f8, FR_SNORM_LIMIT
nop.i 0 ;;
}
{.mfi
nop.m 0
// P36 = P34+r2*P56
fma.s1 FR_COEFF4 = FR_COEFF5, FR_COEFF3, FR_COEFF4
nop.i 0
}
{.mfi
nop.m 0
// GR_D_ADDR = r'*r2
fma.s1 FR_COEFF3 = FR_COEFF3, FR_KF0, f0
nop.i 0 ;;
}
{.mfi
nop.m 0
// is input below 28.0 ?
(p13) fcmp.lt.s1 p13, p14 = f8, FR_28
nop.i 0
}
{.mfi
nop.m 0
// P' = P12*r'+D'
fma.s1 FR_COEFF2 = FR_COEFF2, FR_KF0, FR_OF_TEST
nop.i 0 ;;
}
{.mfi
nop.m 0
// P = P'+r3*P36
fma.s1 FR_COEFF3 = FR_COEFF3, FR_COEFF4, FR_COEFF2
nop.i 0
}
{.mfi
nop.m 0
// T = 2^{K-63}*T
fma.s1 FR_UF_TEST = FR_UF_TEST, FR_XL10, f0
nop.i 0 ;;
}
.pred.rel "mutex",p13,p14
{.mfi
nop.m 0
(p13) fma.s1 f8 = FR_COEFF3, FR_UF_TEST, FR_UF_TEST
nop.i 0
}
{.mfb
nop.m 0
// result = T+T*P
(p14) fma.s0 f8 = FR_COEFF3, FR_UF_TEST, FR_UF_TEST
// return
(p11) br.ret.sptk b0 ;; // return, if result normal
}
// Here if result in denormal range (and not zero)
{.mib
nop.m 0
mov GR_Parameter_TAG= 264
br.cond.sptk __libm_error_region // Branch to error handling
}
;;
SPECIAL_EXP10:
{.mfi
nop.m 0
// x = -Infinity ?
fclass.m p6, p0 = f8, 0x22
nop.i 0 ;;
}
{.mfi
nop.m 0
// x = +Infinity ?
fclass.m p7, p0 = f8, 0x21
nop.i 0 ;;
}
{.mfi
nop.m 0
// x = +/-Zero ?
fclass.m p8, p0 = f8, 0x7
nop.i 0
}
{.mfb
nop.m 0
// exp10(-Infinity) = 0
(p6) mov f8 = f0
(p6) br.ret.spnt b0 ;;
}
{.mfb
nop.m 0
// exp10(+Infinity) = +Infinity
nop.f 0
(p7) br.ret.spnt b0 ;;
}
{.mfb
nop.m 0
// exp10(+/-0) = 1
(p8) mov f8 = f1
(p8) br.ret.spnt b0 ;;
}
{.mfb
nop.m 0
// Remaining cases: NaNs
fma.s0 f8 = f8, f1, f0
br.ret.sptk b0 ;;
}
OUT_RANGE_EXP10:
// underflow: p6 = 1
// overflow: p8 = 1
.pred.rel "mutex",p6,p8
{.mmi
(p8) mov GR_CONST1 = 0x1fffe
(p6) mov GR_CONST1 = 1
nop.i 0
}
;;
{.mii
setf.exp FR_KF0 = GR_CONST1
(p8) mov GR_Parameter_TAG = 165
(p6) mov GR_Parameter_TAG = 264
}
;;
{.mfb
nop.m 999
fma.s0 f8 = FR_KF0, FR_KF0, f0 // Create overflow/underflow
br.cond.sptk __libm_error_region // Branch to error handling
}
;;
GLOBAL_IEEE754_END(exp10l)
weak_alias (exp10l, pow10l)
LOCAL_LIBM_ENTRY(__libm_error_region)
.prologue
{.mfi
add GR_Parameter_Y = -32, sp // Parameter 2 value
nop.f 0
.save ar.pfs, GR_SAVE_PFS
mov GR_SAVE_PFS = ar.pfs // Save ar.pfs
}
{.mfi
.fframe 64
add sp = -64, sp // Create new stack
nop.f 0
mov GR_SAVE_GP = gp ;; // Save gp
}
{.mmi
stfe [ GR_Parameter_Y ] = FR_Y, 16 // STORE Parameter 2 on stack
add GR_Parameter_X = 16, sp // Parameter 1 address
.save b0, GR_SAVE_B0
mov GR_SAVE_B0 = b0 ;; // Save b0
}
.body
{.mib
stfe [ GR_Parameter_X ] = FR_X // STORE Parameter 1 on stack
add GR_Parameter_RESULT = 0, GR_Parameter_Y // Parameter 3 address
nop.b 0
}
{.mib
stfe [ GR_Parameter_Y ] = FR_RESULT // STORE Parameter 3 on stack
add GR_Parameter_Y = -16, GR_Parameter_Y
br.call.sptk b0 = __libm_error_support# ;; // Call error handling function
}
{.mmi
add GR_Parameter_RESULT = 48, sp
nop.m 0
nop.i 0 ;;
}
{.mmi
ldfe f8 = [ GR_Parameter_RESULT ] // Get return result off stack
.restore sp
add sp = 64, sp // Restore stack pointer
mov b0 = GR_SAVE_B0 ;; // Restore return address
}
{.mib
mov gp = GR_SAVE_GP // Restore gp
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
br.ret.sptk b0 ;; // Return
}
LOCAL_LIBM_END(__libm_error_region)
.type __libm_error_support#, @function
.global __libm_error_support#
|