about summary refs log tree commit diff
path: root/sysdeps/hppa/dl-machine.h
blob: 4e6e70b3c90f4c32b68e6f388d0bc226ad2290db (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
/* Machine-dependent ELF dynamic relocation inline functions.  PA-RISC version.
   Copyright (C) 1995-2023 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library.  If not, see
   <https://www.gnu.org/licenses/>.  */

#ifndef dl_machine_h
#define dl_machine_h 1

#define ELF_MACHINE_NAME "hppa"

#include <sys/param.h>
#include <assert.h>
#include <string.h>
#include <link.h>
#include <errno.h>
#include <dl-fptr.h>
#include <abort-instr.h>
#include <tls.h>
#include <dl-static-tls.h>
#include <dl-machine-rel.h>

/* These two definitions must match the definition of the stub in
   bfd/elf32-hppa.c (see plt_stub[]).

   a. Define the size of the *entire* stub we place at the end of the PLT
   table (right up against the GOT).

   b. Define the number of bytes back from the GOT to the entry point of
   the PLT stub. You see the PLT stub must be entered in the middle
   so it can depwi to find it's own address (long jump stub)

   c. Define the size of a single PLT entry so we can jump over the
   last entry to get the stub address */

#define SIZEOF_PLT_STUB (7*4)
#define GOT_FROM_PLT_STUB (4*4)
#define PLT_ENTRY_SIZE (2*4)

/* The gp slot in the function descriptor contains the relocation offset
   before resolution.  To distinguish between a resolved gp value and an
   unresolved relocation offset we set an unused bit in the relocation
   offset.  This would allow us to do a synchronzied two word update
   using this bit (interlocked update), but instead of waiting for the
   update we simply recompute the gp value given that we know the ip.  */
#define PA_GP_RELOC 1

/* Initialize the function descriptor table before relocations */
static inline void
__hppa_init_bootstrap_fdesc_table (struct link_map *map)
{
  ElfW(Addr) *boot_table;

  /* Careful: this will be called before got has been relocated... */
  ELF_MACHINE_LOAD_ADDRESS(boot_table,_dl_boot_fptr_table);

  map->l_mach.fptr_table_len = ELF_MACHINE_BOOT_FPTR_TABLE_LEN;
  map->l_mach.fptr_table = boot_table;
}

#define ELF_MACHINE_BEFORE_RTLD_RELOC(map, dynamic_info)	\
	__hppa_init_bootstrap_fdesc_table (map);		\
	_dl_fptr_init();

/* Return nonzero iff ELF header is compatible with the running host.  */
static inline int
elf_machine_matches_host (const Elf32_Ehdr *ehdr)
{
  return ehdr->e_machine == EM_PARISC;
}

/* Return the link-time address of _DYNAMIC.  */
static inline Elf32_Addr
elf_machine_dynamic (void) __attribute__ ((const));

static inline Elf32_Addr
elf_machine_dynamic (void)
{
  Elf32_Addr dynamic;

  asm ("bl	1f,%0\n"
"	addil	L'_GLOBAL_OFFSET_TABLE_ - ($PIC_pcrel$0 - 1),%0\n"
"1:	ldw	R'_GLOBAL_OFFSET_TABLE_ - ($PIC_pcrel$0 - 5)(%%r1),%0\n"
       : "=r" (dynamic) : : "r1");

  return dynamic;
}

/* Return the run-time load address of the shared object.  */
static inline Elf32_Addr
elf_machine_load_address (void) __attribute__ ((const));

static inline Elf32_Addr
elf_machine_load_address (void)
{
  Elf32_Addr dynamic;

  asm (
"	bl	1f,%0\n"
"	addil	L'_DYNAMIC - ($PIC_pcrel$0 - 1),%0\n"
"1:	ldo	R'_DYNAMIC - ($PIC_pcrel$0 - 5)(%%r1),%0\n"
   : "=r" (dynamic) : : "r1");

  return dynamic - elf_machine_dynamic ();
}

/* Fixup a PLT entry to bounce directly to the function at VALUE. */
static inline struct fdesc __attribute__ ((always_inline))
elf_machine_fixup_plt (struct link_map *map, lookup_t t,
		       const ElfW(Sym) *refsym, const ElfW(Sym) *sym,
		       const Elf32_Rela *reloc,
		       Elf32_Addr *reloc_addr, struct fdesc value)
{
  volatile Elf32_Addr *rfdesc = reloc_addr;
  /* map is the link_map for the caller, t is the link_map for the object
     being called */

  /* We would like the function descriptor to be double word aligned.  This
     helps performance (ip and gp then reside on the same cache line) and
     we can update the pair atomically with a single store.  The linker
     now ensures this alignment but we still have to handle old code.  */
  if ((unsigned int)reloc_addr & 7)
    {
      /* Need to ensure that the gp is visible before the code
         entry point is updated */
      rfdesc[1] = value.gp;
      atomic_full_barrier();
      rfdesc[0] = value.ip;
    }
  else
    {
      /* Update pair atomically with floating point store.  */
      union { ElfW(Word) v[2]; double d; } u;

      u.v[0] = value.ip;
      u.v[1] = value.gp;
      *(volatile double *)rfdesc = u.d;
    }
  return value;
}

/* Return the final value of a plt relocation.  */
static inline struct fdesc
elf_machine_plt_value (struct link_map *map, const Elf32_Rela *reloc,
		       struct fdesc value)
{
  /* We are rela only, return a function descriptor as a plt entry. */
  return (struct fdesc) { value.ip + reloc->r_addend, value.gp };
}

/* Set up the loaded object described by L so its unrelocated PLT
   entries will jump to the on-demand fixup code in dl-runtime.c.  */

static inline int
elf_machine_runtime_setup (struct link_map *l, struct r_scope_elem *scope[],
			   int lazy, int profile)
{
  Elf32_Addr *got = NULL;
  Elf32_Addr l_addr, iplt, jmprel, end_jmprel, r_type, r_sym;
  const Elf32_Rela *reloc;
  struct fdesc *fptr;
  static union {
    unsigned char c[8];
    Elf32_Addr i[2];
  } sig = {{0x00,0xc0,0xff,0xee, 0xde,0xad,0xbe,0xef}};

  /* Initialize dp register for main executable.  */
  if (l->l_main_map)
    {
      register Elf32_Addr dp asm ("%r27");

      dp = D_PTR (l, l_info[DT_PLTGOT]);
      asm volatile ("" : : "r" (dp));
    }

  /* If we don't have a PLT we can just skip all this... */
  if (__builtin_expect (l->l_info[DT_JMPREL] == NULL,0))
    return lazy;

  /* All paths use these values */
  l_addr = l->l_addr;
  jmprel = D_PTR(l, l_info[DT_JMPREL]);
  end_jmprel = jmprel + l->l_info[DT_PLTRELSZ]->d_un.d_val;

  extern void _dl_runtime_resolve (void);
  extern void _dl_runtime_profile (void);

  /* Linking lazily */
  if (lazy)
    {
      /* FIXME: Search for the got, but backwards through the relocs, technically we should
	 find it on the first try. However, assuming the relocs got out of order the
	 routine is made a bit more robust by searching them all in case of failure. */
      for (iplt = (end_jmprel - sizeof (Elf32_Rela)); iplt >= jmprel; iplt -= sizeof (Elf32_Rela))
	{

	  reloc = (const Elf32_Rela *) iplt;
	  r_type = ELF32_R_TYPE (reloc->r_info);
	  r_sym = ELF32_R_SYM (reloc->r_info);

	  got = (Elf32_Addr *) (reloc->r_offset + l_addr + PLT_ENTRY_SIZE + SIZEOF_PLT_STUB);

	  /* If we aren't an IPLT, and we aren't NONE then it's a bad reloc */
	  if (__builtin_expect (r_type != R_PARISC_IPLT, 0))
	    {
	      if (__builtin_expect (r_type != R_PARISC_NONE, 0))
		_dl_reloc_bad_type (l, r_type, 1);
	      continue;
	    }

	  /* Check for the plt_stub that binutils placed here for us
	     to use with _dl_runtime_resolve  */
	  if (got[-2] != sig.i[0] || got[-1] != sig.i[1])
	    {
	      got = NULL; /* Not the stub... keep looking */
	    }
	  else
	    {
	      /* Found the GOT! */
	      register Elf32_Addr ltp __asm__ ("%r19");

	      /* Identify this shared object. Second entry in the got. */
	      got[1] = (Elf32_Addr) l;

	      /* This function will be called to perform the relocation. */
	      if (__builtin_expect (!profile, 1))
		{
		  /* If a static application called us, then _dl_runtime_resolve is not
		     a function descriptor, but the *real* address of the function... */
		  if((unsigned long) &_dl_runtime_resolve & 3)
		    {
		      got[-2] = (Elf32_Addr) ((struct fdesc *)
				  ((unsigned long) &_dl_runtime_resolve & ~3))->ip;
		    }
		  else
		    {
		      /* Static executable! */
		      got[-2] = (Elf32_Addr) &_dl_runtime_resolve;
		    }
		}
	      else
		{
		  if (GLRO(dl_profile) != NULL
		      && _dl_name_match_p (GLRO(dl_profile), l))
		    {
		      /* This is the object we are looking for.  Say that
			 we really want profiling and the timers are
			 started.  */
		      GL(dl_profile_map) = l;
		    }

		  if((unsigned long) &_dl_runtime_profile & 3)
		    {
		      got[-2] = (Elf32_Addr) ((struct fdesc *)
				  ((unsigned long) &_dl_runtime_profile & ~3))->ip;
		    }
		  else
		    {
		      /* Static executable */
		      got[-2] = (Elf32_Addr) &_dl_runtime_profile;
		    }
		}
	      /* Plunk in the gp of this function descriptor so we
		 can make the call to _dl_runtime_xxxxxx */
	      got[-1] = ltp;
	      break;
	      /* Done looking for the GOT, and stub is setup */
	    } /* else we found the GOT */
	} /* for, walk the relocs backwards */

      if(!got)
	return 0; /* No lazy linking for you! */

      /* Process all the relocs, now that we know the GOT... */
      for (iplt = jmprel; iplt < end_jmprel; iplt += sizeof (Elf32_Rela))
	{
	  reloc = (const Elf32_Rela *) iplt;
	  r_type = ELF32_R_TYPE (reloc->r_info);
	  r_sym = ELF32_R_SYM (reloc->r_info);

	  if (__builtin_expect (r_type == R_PARISC_IPLT, 1))
	    {
	      fptr = (struct fdesc *) (reloc->r_offset + l_addr);
	      if (r_sym != 0)
		{
		  /* Relocate the pointer to the stub.  */
		  fptr->ip = (Elf32_Addr) got - GOT_FROM_PLT_STUB;

		  /* Instead of the LTP value, we put the reloc offset
		     here.  The trampoline code will load the proper
		     LTP and pass the reloc offset to the fixup
		     function.  */
		  fptr->gp = (iplt - jmprel) | PA_GP_RELOC;
		} /* r_sym != 0 */
	      else
		{
		  /* Relocate this *ABS* entry.  */
		  fptr->ip = reloc->r_addend + l_addr;
		  fptr->gp = D_PTR (l, l_info[DT_PLTGOT]);
		}
	    } /* r_type == R_PARISC_IPLT */
	} /* for all the relocations */
    } /* if lazy */
  else
    {
      for (iplt = jmprel; iplt < end_jmprel; iplt += sizeof (Elf32_Rela))
	{
	  reloc = (const Elf32_Rela *) iplt;
	  r_type = ELF32_R_TYPE (reloc->r_info);
	  r_sym = ELF32_R_SYM (reloc->r_info);

	  if (__builtin_expect ((r_type == R_PARISC_IPLT) && (r_sym == 0), 1))
	    {
	      fptr = (struct fdesc *) (reloc->r_offset + l_addr);
	      /* Relocate this *ABS* entry, set only the gp, the rest is set later
		 when elf_machine_rela_relative is called (WITHOUT the linkmap)  */
	      fptr->gp = D_PTR (l, l_info[DT_PLTGOT]);
	    } /* r_type == R_PARISC_IPLT */
	} /* for all the relocations */
    }
  return lazy;
}


/* Names of the architecture-specific auditing callback functions.  */
#define ARCH_LA_PLTENTER hppa_gnu_pltenter
#define ARCH_LA_PLTEXIT hppa_gnu_pltexit

/* Adjust DL_STACK_END to get value we want in __libc_stack_end.  */
#define DL_STACK_END(cookie) \
  ((void *) (((long) (cookie)) + 0x160))

/* Initial entry point code for the dynamic linker.
   The C function `_dl_start' is the real entry point;
   its return value is the user program's entry point.  */

#define RTLD_START \
/* Set up dp for any non-PIC lib constructors that may be called.  */	\
static struct link_map * __attribute__((used))				\
set_dp (struct link_map *map)						\
{									\
  register Elf32_Addr dp asm ("%r27");					\
  dp = D_PTR (map, l_info[DT_PLTGOT]);					\
  asm volatile ("" : : "r" (dp));					\
  return map;								\
}									\
									\
asm (									\
"	.text\n"							\
"	.globl _start\n"						\
"	.type _start,@function\n"					\
"_start:\n"								\
	/* The kernel does not give us an initial stack frame. */	\
"	ldo	64(%sp),%sp\n"						\
									\
	/* We need the LTP, and we need it now.				\
	   $PIC_pcrel$0 points 8 bytes past the current instruction,	\
	   just like a branch reloc.  This sequence gets us the		\
	   runtime address of _DYNAMIC. */				\
"	bl	0f,%r19\n"						\
"	addil	L'_DYNAMIC - ($PIC_pcrel$0 - 1),%r19\n"			\
"0:	ldo	R'_DYNAMIC - ($PIC_pcrel$0 - 5)(%r1),%r26\n"		\
									\
	/* The link time address is stored in the first entry of the	\
	   GOT.  */							\
"	addil	L'_GLOBAL_OFFSET_TABLE_ - ($PIC_pcrel$0 - 9),%r19\n"	\
"	ldw	R'_GLOBAL_OFFSET_TABLE_ - ($PIC_pcrel$0 - 13)(%r1),%r20\n" \
									\
"	sub	%r26,%r20,%r20\n"	/* Calculate load offset */	\
									\
	/* Rummage through the dynamic entries, looking for		\
	   DT_PLTGOT.  */						\
"	ldw,ma	8(%r26),%r19\n"						\
"1:	cmpib,=,n 3,%r19,2f\n"	/* tag == DT_PLTGOT? */			\
"	cmpib,<>,n 0,%r19,1b\n"						\
"	ldw,ma	8(%r26),%r19\n"						\
									\
	/* Uh oh!  We didn't find one.  Abort. */			\
"	iitlbp	%r0,(%sr0,%r0)\n"					\
									\
"2:	ldw	-4(%r26),%r19\n"	/* Found it, load value. */	\
"	add	%r19,%r20,%r19\n"	/* And add the load offset. */	\
									\
	/* Our initial stack layout is rather different from everyone	\
	   else's due to the unique PA-RISC ABI.  As far as I know it	\
	   looks like this:						\
									\
	   -----------------------------------  (this frame created above) \
	   |         32 bytes of magic       |				\
	   |---------------------------------|				\
	   | 32 bytes argument/sp save area  |				\
	   |---------------------------------|  ((current->mm->env_end)	\
	   |         N bytes of slack        |	 + 63 & ~63)		\
	   |---------------------------------|				\
	   |      envvar and arg strings     |				\
	   |---------------------------------|				\
	   |	    ELF auxiliary info	     |				\
	   |         (up to 28 words)        |				\
	   |---------------------------------|				\
	   |  Environment variable pointers  |				\
	   |         upwards to NULL	     |				\
	   |---------------------------------|				\
	   |        Argument pointers        |				\
	   |         upwards to NULL	     |				\
	   |---------------------------------|				\
	   |          argc (1 word)          |				\
	   -----------------------------------				\
									\
	  So, obviously, we can't just pass %sp to _dl_start.  That's	\
	  okay, argv-4 will do just fine.				\
									\
	  This is always within range so we'll be okay. */		\
"	bl	_dl_start,%rp\n"					\
"	ldo	-4(%r24),%r26\n"					\
									\
"	.globl _dl_start_user\n"					\
"	.type _dl_start_user,@function\n"				\
"_dl_start_user:\n"							\
	/* Save the entry point in %r3. */				\
"	copy	%ret0,%r3\n"						\
									\
	/* The loader adjusts argc, argv, env, and the aux vectors	\
	   directly on the stack to remove any arguments used for	\
	   direct loader invocation.  Thus, argc and argv must be	\
	   reloaded from from _dl_argc and _dl_argv.  */		\
									\
	/* Load main_map from _rtld_local and setup dp. */		\
"	addil	LT'_rtld_local,%r19\n"					\
"	ldw	RT'_rtld_local(%r1),%r26\n"				\
"	bl	set_dp, %r2\n"						\
"	ldw	0(%r26),%r26\n"						\
"	copy	%ret0,%r26\n"						\
									\
	/* Load argc from _dl_argc.  */					\
"	addil	LT'_dl_argc,%r19\n"					\
"	ldw	RT'_dl_argc(%r1),%r20\n"				\
"	ldw	0(%r20),%r25\n"						\
"	stw	%r25,-40(%sp)\n"					\
									\
	/* Same for argv with _dl_argv.  */				\
"	addil	LT'_dl_argv,%r19\n"					\
"	ldw	RT'_dl_argv(%r1),%r20\n"				\
"	ldw	0(%r20),%r24\n"						\
"	stw	%r24,-44(%sp)\n"					\
									\
	/* envp = argv + argc + 1 */					\
"	sh2add	%r25,%r24,%r23\n"					\
									\
	/* Call _dl_init(main_map, argc, argv, envp). */		\
"	bl	_dl_init,%r2\n"						\
"	ldo	4(%r23),%r23\n"	/* delay slot */			\
									\
	/* Reload argc, argv to the registers start.S expects.  */	\
"	ldw	-40(%sp),%r25\n"					\
"	ldw	-44(%sp),%r24\n"					\
									\
	/* _dl_fini is a local function in the loader, so we construct	\
	   a false OPD here and pass this to the application.  */	\
	/* FIXME: Should be able to use P%, and LR RR to have the	\
	   the linker construct a proper OPD.  */			\
"	.section .data\n"						\
"__dl_fini_plabel:\n"							\
"	.word	_dl_fini\n"						\
"	.word	0xdeadbeef\n"						\
"	.previous\n"							\
									\
	/* %r3 contains a function pointer, we need to mask out the	\
	   lower bits and load the gp and jump address. */		\
"	depi	0,31,2,%r3\n"						\
"	ldw	0(%r3),%r2\n"						\
"	addil	LT'__dl_fini_plabel,%r19\n"				\
"	ldw	RT'__dl_fini_plabel(%r1),%r23\n"			\
"	stw	%r19,4(%r23)\n"						\
"	ldw	4(%r3),%r19\n"	/* load the object's gp */		\
"	bv	%r0(%r2)\n"						\
"	depi	2,31,2,%r23\n"	/* delay slot */			\
);

/* ELF_RTYPE_CLASS_PLT iff TYPE describes relocation of a PLT entry or
   a TLS variable, so references should not be allowed to define the value.
   ELF_RTYPE_CLASS_COPY iff TYPE should not be allowed to resolve to one
   of the main executable's symbols, as for a COPY reloc.  */
#if !defined RTLD_BOOTSTRAP
# define elf_machine_type_class(type)				\
  ((((type) == R_PARISC_IPLT					\
  || (type) == R_PARISC_EPLT					\
  || (type) == R_PARISC_TLS_DTPMOD32				\
  || (type) == R_PARISC_TLS_DTPOFF32				\
  || (type) == R_PARISC_TLS_TPREL32)				\
  * ELF_RTYPE_CLASS_PLT)					\
  | (((type) == R_PARISC_COPY) * ELF_RTYPE_CLASS_COPY))
#else
#define elf_machine_type_class(type)				\
 ((((type) == R_PARISC_IPLT					\
   || (type) == R_PARISC_EPLT)					\
   * ELF_RTYPE_CLASS_PLT)					\
   | (((type) == R_PARISC_COPY) * ELF_RTYPE_CLASS_COPY))
#endif

/* Used by the runtime in fixup to figure out if reloc is *really* PLT */
#define ELF_MACHINE_JMP_SLOT R_PARISC_IPLT
#define ELF_MACHINE_SIZEOF_JMP_SLOT PLT_ENTRY_SIZE

/* Return the address of the entry point. */
#define ELF_MACHINE_START_ADDRESS(map, start)			\
({								\
	ElfW(Addr) addr;					\
	DL_DT_FUNCTION_ADDRESS(map, start, static, addr)	\
	addr;							\
})

/* We define an initialization functions.  This is called very early in
 *    _dl_sysdep_start.  */
#define DL_PLATFORM_INIT dl_platform_init ()

static inline void __attribute__ ((unused))
dl_platform_init (void)
{
	if (GLRO(dl_platform) != NULL && *GLRO(dl_platform) == '\0')
	/* Avoid an empty string which would disturb us.  */
		GLRO(dl_platform) = NULL;
}

#endif /* !dl_machine_h */

/* These are only actually used where RESOLVE_MAP is defined, anyway. */
#ifdef RESOLVE_MAP

#define reassemble_21(as21) \
  (  (((as21) & 0x100000) >> 20) \
   | (((as21) & 0x0ffe00) >> 8) \
   | (((as21) & 0x000180) << 7) \
   | (((as21) & 0x00007c) << 14) \
   | (((as21) & 0x000003) << 12))

#define reassemble_14(as14) \
  (  (((as14) & 0x1fff) << 1) \
   | (((as14) & 0x2000) >> 13))

static void __attribute__((always_inline))
elf_machine_rela (struct link_map *map, struct r_scope_elem *scope[],
		  const Elf32_Rela *reloc,
		  const Elf32_Sym *sym,
		  const struct r_found_version *version,
		  void *const reloc_addr_arg,
		  int skip_ifunc)
{
  Elf32_Addr *const reloc_addr = reloc_addr_arg;
  const Elf32_Sym *const refsym = sym;
  unsigned long const r_type = ELF32_R_TYPE (reloc->r_info);
  struct link_map *sym_map;
  Elf32_Addr value;

  /* RESOLVE_MAP will return a null value for undefined syms, and
     non-null for all other syms.  In particular, relocs with no
     symbol (symbol index of zero), also called *ABS* relocs, will be
     resolved to MAP.  (The first entry in a symbol table is all
     zeros, and an all zero Elf32_Sym has a binding of STB_LOCAL.)
     See RESOLVE_MAP definition in elf/dl-reloc.c  */
# ifdef RTLD_BOOTSTRAP
  sym_map = map;
# else
  sym_map = RESOLVE_MAP (map, scope, &sym, version, r_type);
# endif

  if (sym_map)
    {
      value = SYMBOL_ADDRESS (sym_map, sym, true);
      value += reloc->r_addend;
    }
  else
    value = 0;

  switch (r_type)
    {
    case R_PARISC_DIR32:
      /* .eh_frame can have unaligned relocs.  */
      if ((unsigned long) reloc_addr_arg & 3)
	{
	  char *rel_addr = (char *) reloc_addr_arg;
	  rel_addr[0] = value >> 24;
	  rel_addr[1] = value >> 16;
	  rel_addr[2] = value >> 8;
	  rel_addr[3] = value;
	  return;
	}
      break;

    case R_PARISC_DIR21L:
      {
	unsigned int insn = *(unsigned int *)reloc_addr;
	value = (SYMBOL_ADDRESS (sym_map, sym, true)
		 + ((reloc->r_addend + 0x1000) & -0x2000));
	value = value >> 11;
	insn = (insn &~ 0x1fffff) | reassemble_21 (value);
	*(unsigned int *)reloc_addr = insn;
      }
      return;

    case R_PARISC_DIR14R:
      {
	unsigned int insn = *(unsigned int *)reloc_addr;
	value = ((SYMBOL_ADDRESS (sym_map, sym, true) & 0x7ff)
		 + (((reloc->r_addend & 0x1fff) ^ 0x1000) - 0x1000));
	insn = (insn &~ 0x3fff) | reassemble_14 (value);
	*(unsigned int *)reloc_addr = insn;
      }
      return;

    case R_PARISC_PLABEL32:
      /* Easy rule: If there is a symbol and it is global, then we
	 need to make a dynamic function descriptor.  Otherwise we
	 have the address of a PLT slot for a local symbol which we
	 know to be unique. */
      if (sym == NULL
	  || sym_map == NULL
	  || ELF32_ST_BIND (sym->st_info) == STB_LOCAL)
	{
	  break;
	}
      /* Set bit 30 to indicate to $$dyncall that this is a PLABEL.
	 We have to do this outside of the generic function descriptor
	 code, since it doesn't know about our requirement for setting
	 protection bits */
      value = (Elf32_Addr)((unsigned int)_dl_make_fptr (sym_map, sym, value) | 2);
      break;

    case R_PARISC_PLABEL21L:
    case R_PARISC_PLABEL14R:
      {
	unsigned int insn = *(unsigned int *)reloc_addr;

	if (__builtin_expect (sym == NULL, 0))
	  break;

	value = (Elf32_Addr)((unsigned int)_dl_make_fptr (sym_map, sym, value) | 2);

	if (r_type == R_PARISC_PLABEL21L)
	  {
	    value >>= 11;
	    insn = (insn &~ 0x1fffff) | reassemble_21 (value);
	  }
	else
	  {
	    value &= 0x7ff;
	    insn = (insn &~ 0x3fff) | reassemble_14 (value);
	  }

	*(unsigned int *)reloc_addr = insn;
      }
      return;

    case R_PARISC_IPLT:
      if (__builtin_expect (sym_map != NULL, 1))
	{
	  elf_machine_fixup_plt (NULL, sym_map, NULL, NULL, reloc, reloc_addr,
				 DL_FIXUP_MAKE_VALUE(sym_map, value));
	}
      else
	{
	  /* If we get here, it's a (weak) undefined sym.  */
	  elf_machine_fixup_plt (NULL, map, NULL, NULL, reloc, reloc_addr,
				 DL_FIXUP_MAKE_VALUE(map, value));
	}
      return;

    case R_PARISC_COPY:
      if (__builtin_expect (sym == NULL, 0))
	/* This can happen in trace mode if an object could not be
	   found.  */
	break;
      if (__builtin_expect (sym->st_size > refsym->st_size, 0)
	  || (__builtin_expect (sym->st_size < refsym->st_size, 0)
	      && __builtin_expect (GLRO(dl_verbose), 0)))
	{
	  const char *strtab;

	  strtab = (const char *) D_PTR (map, l_info[DT_STRTAB]);
	  _dl_error_printf ("%s: Symbol `%s' has different size in shared object, "
			    "consider re-linking\n",
			    RTLD_PROGNAME, strtab + refsym->st_name);
	}
      memcpy (reloc_addr_arg, (void *) value,
	      MIN (sym->st_size, refsym->st_size));
      return;

#if !defined RTLD_BOOTSTRAP
    case R_PARISC_TLS_DTPMOD32:
      value = sym_map->l_tls_modid;
      break;

    case R_PARISC_TLS_DTPOFF32:
      /* During relocation all TLS symbols are defined and used.
	 Therefore the offset is already correct.  */
      if (sym != NULL)
	*reloc_addr = sym->st_value + reloc->r_addend;
      return;

    case R_PARISC_TLS_TPREL32:
      /* The offset is negative, forward from the thread pointer */
      if (sym != NULL)
	{
	  CHECK_STATIC_TLS (map, sym_map);
	  value = sym_map->l_tls_offset + sym->st_value + reloc->r_addend;
	}
      break;
#endif	/* use TLS */

    case R_PARISC_NONE:	/* Alright, Wilbur. */
      return;

    default:
      _dl_reloc_bad_type (map, r_type, 0);
    }

  *reloc_addr = value;
}

/* hppa doesn't have an R_PARISC_RELATIVE reloc, but uses relocs with
   ELF32_R_SYM (info) == 0 for a similar purpose.  */
static void __attribute__((always_inline))
elf_machine_rela_relative (Elf32_Addr l_addr,
			   const Elf32_Rela *reloc,
			   void *const reloc_addr_arg)
{
  unsigned long const r_type = ELF32_R_TYPE (reloc->r_info);
  Elf32_Addr *const reloc_addr = reloc_addr_arg;
  static char msgbuf[] = { "Unknown" };
  struct link_map map;
  Elf32_Addr value;

  value = l_addr + reloc->r_addend;

  if (ELF32_R_SYM (reloc->r_info) != 0){
    _dl_error_printf ("%s: In elf_machine_rela_relative "
		      "ELF32_R_SYM (reloc->r_info) != 0. Aborting.",
		      RTLD_PROGNAME);
    ABORT_INSTRUCTION;  /* Crash. */
  }

  switch (r_type)
    {
    case R_PARISC_DIR32:
      /* .eh_frame can have unaligned relocs.  */
      if ((unsigned long) reloc_addr_arg & 3)
	{
	  char *rel_addr = (char *) reloc_addr_arg;
	  rel_addr[0] = value >> 24;
	  rel_addr[1] = value >> 16;
	  rel_addr[2] = value >> 8;
	  rel_addr[3] = value;
	  return;
	}
      break;

    case R_PARISC_PLABEL32:
      break;

    case R_PARISC_IPLT: /* elf_machine_runtime_setup already set gp */
      break;

    case R_PARISC_NONE:
      return;

    default: /* Bad reloc, map unknown (really it's the current map) */
      map.l_name = msgbuf;
      _dl_reloc_bad_type (&map, r_type, 0);
      return;
    }

  *reloc_addr = value;
}

static void __attribute__((always_inline))
elf_machine_lazy_rel (struct link_map *map, struct r_scope_elem *scope[],
		      Elf32_Addr l_addr, const Elf32_Rela *reloc,
		      int skip_ifunc)
{
  /* We don't have anything to do here.  elf_machine_runtime_setup has
     done all the relocs already.  */
}

#endif /* RESOLVE_MAP */