1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
|
/* Private function declarations for libm.
Copyright (C) 2011-2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#define __MSUF_X(x, suffix) x ## suffix
#define __MSUF_S(...) __MSUF_X (__VA_ARGS__)
#define __MSUF(x) __MSUF_S (x, _MSUF_)
#define __MSUF_R_X(x, suffix) x ## suffix ## _r
#define __MSUF_R_S(...) __MSUF_R_X (__VA_ARGS__)
#define __MSUF_R(x) __MSUF_R_S (x, _MSUF_)
/* IEEE style elementary functions. */
extern _Mdouble_ __MSUF (__ieee754_acos) (_Mdouble_);
extern _Mdouble_ __MSUF (__ieee754_acosh) (_Mdouble_);
extern _Mdouble_ __MSUF (__ieee754_asin) (_Mdouble_);
extern _Mdouble_ __MSUF (__ieee754_atan2) (_Mdouble_, _Mdouble_);
extern _Mdouble_ __MSUF (__ieee754_atanh) (_Mdouble_);
extern _Mdouble_ __MSUF (__ieee754_cosh) (_Mdouble_);
extern _Mdouble_ __MSUF (__ieee754_exp) (_Mdouble_);
extern _Mdouble_ __MSUF (__ieee754_exp10) (_Mdouble_);
extern _Mdouble_ __MSUF (__ieee754_exp2) (_Mdouble_);
extern _Mdouble_ __MSUF (__ieee754_fmod) (_Mdouble_, _Mdouble_);
extern _Mdouble_ __MSUF (__ieee754_gamma) (_Mdouble_);
extern _Mdouble_ __MSUF_R (__ieee754_gamma) (_Mdouble_, int *);
extern _Mdouble_ __MSUF (__ieee754_hypot) (_Mdouble_, _Mdouble_);
extern _Mdouble_ __MSUF (__ieee754_j0) (_Mdouble_);
extern _Mdouble_ __MSUF (__ieee754_j1) (_Mdouble_);
extern _Mdouble_ __MSUF (__ieee754_jn) (int, _Mdouble_);
extern _Mdouble_ __MSUF (__ieee754_lgamma) (_Mdouble_);
extern _Mdouble_ __MSUF_R (__ieee754_lgamma) (_Mdouble_, int *);
extern _Mdouble_ __MSUF (__ieee754_log) (_Mdouble_);
extern _Mdouble_ __MSUF (__ieee754_log10) (_Mdouble_);
extern _Mdouble_ __MSUF (__ieee754_log2) (_Mdouble_);
extern _Mdouble_ __MSUF (__ieee754_pow) (_Mdouble_, _Mdouble_);
extern _Mdouble_ __MSUF (__ieee754_remainder) (_Mdouble_, _Mdouble_);
extern _Mdouble_ __MSUF (__ieee754_sinh) (_Mdouble_);
extern _Mdouble_ __MSUF (__ieee754_sqrt) (_Mdouble_);
extern _Mdouble_ __MSUF (__ieee754_y0) (_Mdouble_);
extern _Mdouble_ __MSUF (__ieee754_y1) (_Mdouble_);
extern _Mdouble_ __MSUF (__ieee754_yn) (int, _Mdouble_);
extern _Mdouble_ __MSUF (__ieee754_scalb) (_Mdouble_, _Mdouble_);
extern int __MSUF (__ieee754_ilogb) (_Mdouble_);
extern int32_t __MSUF (__ieee754_rem_pio2) (_Mdouble_, _Mdouble_ *);
/* fdlibm kernel functions. */
extern _Mdouble_ __MSUF (__kernel_sin) (_Mdouble_, _Mdouble_, int);
extern _Mdouble_ __MSUF (__kernel_cos) (_Mdouble_, _Mdouble_);
extern _Mdouble_ __MSUF (__kernel_tan) (_Mdouble_, _Mdouble_, int);
#if defined __MATH_DECLARING_LONG_DOUBLE || defined __MATH_DECLARING_FLOATN
extern void __MSUF (__kernel_sincos) (_Mdouble_, _Mdouble_,
_Mdouble_ *, _Mdouble_ *, int);
#endif
#if !defined __MATH_DECLARING_LONG_DOUBLE || defined __MATH_DECLARING_FLOATN
extern int __MSUF (__kernel_rem_pio2) (_Mdouble_ *, _Mdouble_ *, int,
int, int, const int32_t *);
#endif
/* Internal functions. */
/* Return X^2 + Y^2 - 1, computed without large cancellation error.
It is given that 1 > X >= Y >= epsilon / 2, and that X^2 + Y^2 >=
0.5. */
extern _Mdouble_ __MSUF (__x2y2m1) (_Mdouble_ x, _Mdouble_ y);
/* Compute the product of X + X_EPS, X + X_EPS + 1, ..., X + X_EPS + N
- 1, in the form R * (1 + *EPS) where the return value R is an
approximation to the product and *EPS is set to indicate the
approximate error in the return value. X is such that all the
values X + 1, ..., X + N - 1 are exactly representable, and X_EPS /
X is small enough that factors quadratic in it can be
neglected. */
extern _Mdouble_ __MSUF (__gamma_product) (_Mdouble_ x, _Mdouble_ x_eps,
int n, _Mdouble_ *eps);
/* Compute lgamma of a negative argument X, if it is in a range
(depending on the floating-point format) for which expansion around
zeros is used, setting *SIGNGAMP accordingly. */
extern _Mdouble_ __MSUF (__lgamma_neg) (_Mdouble_ x, int *signgamp);
/* Compute the product of 1 + (T / (X + X_EPS)), 1 + (T / (X + X_EPS +
1)), ..., 1 + (T / (X + X_EPS + N - 1)), minus 1. X is such that
all the values X + 1, ..., X + N - 1 are exactly representable, and
X_EPS / X is small enough that factors quadratic in it can be
neglected. */
#if !defined __MATH_DECLARING_FLOAT
extern _Mdouble_ __MSUF (__lgamma_product) (_Mdouble_ t, _Mdouble_ x,
_Mdouble_ x_eps, int n);
#endif
#undef __MSUF_X
#undef __MSUF_S
#undef __MSUF
#undef __MSUF_R_X
#undef __MSUF_R_S
#undef __MSUF_R
|