about summary refs log tree commit diff
path: root/sysdeps/generic/math_private.h
blob: a8f1a8e4e5937d247c447091aee3adc68b30d96b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

/*
 * from: @(#)fdlibm.h 5.1 93/09/24
 */

#ifndef _MATH_PRIVATE_H_
#define _MATH_PRIVATE_H_

#include <endian.h>
#include <stdint.h>
#include <sys/types.h>
#include <fenv.h>
#include <float.h>
#include <get-rounding-mode.h>

/* The original fdlibm code used statements like:
	n0 = ((*(int*)&one)>>29)^1;		* index of high word *
	ix0 = *(n0+(int*)&x);			* high word of x *
	ix1 = *((1-n0)+(int*)&x);		* low word of x *
   to dig two 32 bit words out of the 64 bit IEEE floating point
   value.  That is non-ANSI, and, moreover, the gcc instruction
   scheduler gets it wrong.  We instead use the following macros.
   Unlike the original code, we determine the endianness at compile
   time, not at run time; I don't see much benefit to selecting
   endianness at run time.  */

/* A union which permits us to convert between a double and two 32 bit
   ints.  */

#if __FLOAT_WORD_ORDER == BIG_ENDIAN

typedef union
{
  double value;
  struct
  {
    u_int32_t msw;
    u_int32_t lsw;
  } parts;
  uint64_t word;
} ieee_double_shape_type;

#endif

#if __FLOAT_WORD_ORDER == LITTLE_ENDIAN

typedef union
{
  double value;
  struct
  {
    u_int32_t lsw;
    u_int32_t msw;
  } parts;
  uint64_t word;
} ieee_double_shape_type;

#endif

/* Get two 32 bit ints from a double.  */

#define EXTRACT_WORDS(ix0,ix1,d)				\
do {								\
  ieee_double_shape_type ew_u;					\
  ew_u.value = (d);						\
  (ix0) = ew_u.parts.msw;					\
  (ix1) = ew_u.parts.lsw;					\
} while (0)

/* Get the more significant 32 bit int from a double.  */

#ifndef GET_HIGH_WORD
# define GET_HIGH_WORD(i,d)					\
do {								\
  ieee_double_shape_type gh_u;					\
  gh_u.value = (d);						\
  (i) = gh_u.parts.msw;						\
} while (0)
#endif

/* Get the less significant 32 bit int from a double.  */

#ifndef GET_LOW_WORD
# define GET_LOW_WORD(i,d)					\
do {								\
  ieee_double_shape_type gl_u;					\
  gl_u.value = (d);						\
  (i) = gl_u.parts.lsw;						\
} while (0)
#endif

/* Get all in one, efficient on 64-bit machines.  */
#ifndef EXTRACT_WORDS64
# define EXTRACT_WORDS64(i,d)					\
do {								\
  ieee_double_shape_type gh_u;					\
  gh_u.value = (d);						\
  (i) = gh_u.word;						\
} while (0)
#endif

/* Set a double from two 32 bit ints.  */
#ifndef INSERT_WORDS
# define INSERT_WORDS(d,ix0,ix1)				\
do {								\
  ieee_double_shape_type iw_u;					\
  iw_u.parts.msw = (ix0);					\
  iw_u.parts.lsw = (ix1);					\
  (d) = iw_u.value;						\
} while (0)
#endif

/* Get all in one, efficient on 64-bit machines.  */
#ifndef INSERT_WORDS64
# define INSERT_WORDS64(d,i)					\
do {								\
  ieee_double_shape_type iw_u;					\
  iw_u.word = (i);						\
  (d) = iw_u.value;						\
} while (0)
#endif

/* Set the more significant 32 bits of a double from an int.  */
#ifndef SET_HIGH_WORD
#define SET_HIGH_WORD(d,v)					\
do {								\
  ieee_double_shape_type sh_u;					\
  sh_u.value = (d);						\
  sh_u.parts.msw = (v);						\
  (d) = sh_u.value;						\
} while (0)
#endif

/* Set the less significant 32 bits of a double from an int.  */
#ifndef SET_LOW_WORD
# define SET_LOW_WORD(d,v)					\
do {								\
  ieee_double_shape_type sl_u;					\
  sl_u.value = (d);						\
  sl_u.parts.lsw = (v);						\
  (d) = sl_u.value;						\
} while (0)
#endif

/* A union which permits us to convert between a float and a 32 bit
   int.  */

typedef union
{
  float value;
  u_int32_t word;
} ieee_float_shape_type;

/* Get a 32 bit int from a float.  */
#ifndef GET_FLOAT_WORD
# define GET_FLOAT_WORD(i,d)					\
do {								\
  ieee_float_shape_type gf_u;					\
  gf_u.value = (d);						\
  (i) = gf_u.word;						\
} while (0)
#endif

/* Set a float from a 32 bit int.  */
#ifndef SET_FLOAT_WORD
# define SET_FLOAT_WORD(d,i)					\
do {								\
  ieee_float_shape_type sf_u;					\
  sf_u.word = (i);						\
  (d) = sf_u.value;						\
} while (0)
#endif

/* Get long double macros from a separate header.  */
#include <math_ldbl.h>

/* ieee style elementary functions */
extern double __ieee754_sqrt (double);
extern double __ieee754_acos (double);
extern double __ieee754_acosh (double);
extern double __ieee754_log (double);
extern double __ieee754_atanh (double);
extern double __ieee754_asin (double);
extern double __ieee754_atan2 (double,double);
extern double __ieee754_exp (double);
extern double __ieee754_exp2 (double);
extern double __ieee754_exp10 (double);
extern double __ieee754_cosh (double);
extern double __ieee754_fmod (double,double);
extern double __ieee754_pow (double,double);
extern double __ieee754_lgamma_r (double,int *);
extern double __ieee754_gamma_r (double,int *);
extern double __ieee754_lgamma (double);
extern double __ieee754_gamma (double);
extern double __ieee754_log10 (double);
extern double __ieee754_log2 (double);
extern double __ieee754_sinh (double);
extern double __ieee754_hypot (double,double);
extern double __ieee754_j0 (double);
extern double __ieee754_j1 (double);
extern double __ieee754_y0 (double);
extern double __ieee754_y1 (double);
extern double __ieee754_jn (int,double);
extern double __ieee754_yn (int,double);
extern double __ieee754_remainder (double,double);
extern int32_t __ieee754_rem_pio2 (double,double*);
extern double __ieee754_scalb (double,double);
extern int __ieee754_ilogb (double);

/* fdlibm kernel function */
extern double __kernel_standard (double,double,int);
extern float __kernel_standard_f (float,float,int);
extern long double __kernel_standard_l (long double,long double,int);
extern double __kernel_sin (double,double,int);
extern double __kernel_cos (double,double);
extern double __kernel_tan (double,double,int);
extern int    __kernel_rem_pio2 (double*,double*,int,int,int, const int32_t*);

/* internal functions.  */
extern double __copysign (double x, double __y);

extern inline double __copysign (double x, double y)
{ return __builtin_copysign (x, y); }

/* ieee style elementary float functions */
extern float __ieee754_sqrtf (float);
extern float __ieee754_acosf (float);
extern float __ieee754_acoshf (float);
extern float __ieee754_logf (float);
extern float __ieee754_atanhf (float);
extern float __ieee754_asinf (float);
extern float __ieee754_atan2f (float,float);
extern float __ieee754_expf (float);
extern float __ieee754_exp2f (float);
extern float __ieee754_exp10f (float);
extern float __ieee754_coshf (float);
extern float __ieee754_fmodf (float,float);
extern float __ieee754_powf (float,float);
extern float __ieee754_lgammaf_r (float,int *);
extern float __ieee754_gammaf_r (float,int *);
extern float __ieee754_lgammaf (float);
extern float __ieee754_gammaf (float);
extern float __ieee754_log10f (float);
extern float __ieee754_log2f (float);
extern float __ieee754_sinhf (float);
extern float __ieee754_hypotf (float,float);
extern float __ieee754_j0f (float);
extern float __ieee754_j1f (float);
extern float __ieee754_y0f (float);
extern float __ieee754_y1f (float);
extern float __ieee754_jnf (int,float);
extern float __ieee754_ynf (int,float);
extern float __ieee754_remainderf (float,float);
extern int32_t __ieee754_rem_pio2f (float,float*);
extern float __ieee754_scalbf (float,float);
extern int __ieee754_ilogbf (float);


/* float versions of fdlibm kernel functions */
extern float __kernel_sinf (float,float,int);
extern float __kernel_cosf (float,float);
extern float __kernel_tanf (float,float,int);
extern int   __kernel_rem_pio2f (float*,float*,int,int,int, const int32_t*);

/* internal functions.  */
extern float __copysignf (float x, float __y);

extern inline float __copysignf (float x, float y)
{ return __builtin_copysignf (x, y); }

/* ieee style elementary long double functions */
extern long double __ieee754_sqrtl (long double);
extern long double __ieee754_acosl (long double);
extern long double __ieee754_acoshl (long double);
extern long double __ieee754_logl (long double);
extern long double __ieee754_atanhl (long double);
extern long double __ieee754_asinl (long double);
extern long double __ieee754_atan2l (long double,long double);
extern long double __ieee754_expl (long double);
extern long double __ieee754_exp2l (long double);
extern long double __ieee754_exp10l (long double);
extern long double __ieee754_coshl (long double);
extern long double __ieee754_fmodl (long double,long double);
extern long double __ieee754_powl (long double,long double);
extern long double __ieee754_lgammal_r (long double,int *);
extern long double __ieee754_gammal_r (long double,int *);
extern long double __ieee754_lgammal (long double);
extern long double __ieee754_gammal (long double);
extern long double __ieee754_log10l (long double);
extern long double __ieee754_log2l (long double);
extern long double __ieee754_sinhl (long double);
extern long double __ieee754_hypotl (long double,long double);
extern long double __ieee754_j0l (long double);
extern long double __ieee754_j1l (long double);
extern long double __ieee754_y0l (long double);
extern long double __ieee754_y1l (long double);
extern long double __ieee754_jnl (int,long double);
extern long double __ieee754_ynl (int,long double);
extern long double __ieee754_remainderl (long double,long double);
extern int   __ieee754_rem_pio2l (long double,long double*);
extern long double __ieee754_scalbl (long double,long double);
extern int   __ieee754_ilogbl (long double);

/* long double versions of fdlibm kernel functions */
extern long double __kernel_sinl (long double,long double,int);
extern long double __kernel_cosl (long double,long double);
extern long double __kernel_tanl (long double,long double,int);
extern void __kernel_sincosl (long double,long double,
			      long double *,long double *, int);
extern int   __kernel_rem_pio2l (long double*,long double*,int,int,
				 int,const int*);

#ifndef NO_LONG_DOUBLE
/* prototypes required to compile the ldbl-96 support without warnings */
extern int __finitel (long double);
extern int __ilogbl (long double);
extern int __isinfl (long double);
extern int __isnanl (long double);
extern long double __atanl (long double);
extern long double __copysignl (long double, long double);
extern long double __expm1l (long double);
extern long double __floorl (long double);
extern long double __frexpl (long double, int *);
extern long double __ldexpl (long double, int);
extern long double __log1pl (long double);
extern long double __nanl (const char *);
extern long double __rintl (long double);
extern long double __scalbnl (long double, int);
extern long double __sqrtl (long double x);
extern long double fabsl (long double x);
extern void __sincosl (long double, long double *, long double *);
extern long double __logbl (long double x);
extern long double __significandl (long double x);

extern inline long double __copysignl (long double x, long double y)
{ return __builtin_copysignl (x, y); }

#endif

/* Prototypes for functions of the IBM Accurate Mathematical Library.  */
extern double __exp1 (double __x, double __xx, double __error);
extern double __sin (double __x);
extern double __cos (double __x);
extern int __branred (double __x, double *__a, double *__aa);
extern void __doasin (double __x, double __dx, double __v[]);
extern void __dubsin (double __x, double __dx, double __v[]);
extern void __dubcos (double __x, double __dx, double __v[]);
extern double __halfulp (double __x, double __y);
extern double __sin32 (double __x, double __res, double __res1);
extern double __cos32 (double __x, double __res, double __res1);
extern double __mpsin (double __x, double __dx, bool __range_reduce);
extern double __mpcos (double __x, double __dx, bool __range_reduce);
extern double __slowexp (double __x);
extern double __slowpow (double __x, double __y, double __z);
extern void __docos (double __x, double __dx, double __v[]);

/* Return X^2 + Y^2 - 1, computed without large cancellation error.
   It is given that 1 > X >= Y >= epsilon / 2, and that either X >=
   0.75 or Y >= 0.5.  */
extern float __x2y2m1f (float x, float y);
extern double __x2y2m1 (double x, double y);
extern long double __x2y2m1l (long double x, long double y);

/* Compute the product of X + X_EPS, X + X_EPS + 1, ..., X + X_EPS + N
   - 1, in the form R * (1 + *EPS) where the return value R is an
   approximation to the product and *EPS is set to indicate the
   approximate error in the return value.  X is such that all the
   values X + 1, ..., X + N - 1 are exactly representable, and X_EPS /
   X is small enough that factors quadratic in it can be
   neglected.  */
extern float __gamma_productf (float x, float x_eps, int n, float *eps);
extern double __gamma_product (double x, double x_eps, int n, double *eps);
extern long double __gamma_productl (long double x, long double x_eps,
				     int n, long double *eps);

/* Compute lgamma of a negative argument X, if it is in a range
   (depending on the floating-point format) for which expansion around
   zeros is used, setting *SIGNGAMP accordingly.  */
extern float __lgamma_negf (float x, int *signgamp);
extern double __lgamma_neg (double x, int *signgamp);
extern long double __lgamma_negl (long double x, int *signgamp);

/* Compute the product of 1 + (T / (X + X_EPS)), 1 + (T / (X + X_EPS +
   1)), ..., 1 + (T / (X + X_EPS + N - 1)), minus 1.  X is such that
   all the values X + 1, ..., X + N - 1 are exactly representable, and
   X_EPS / X is small enough that factors quadratic in it can be
   neglected.  */
extern double __lgamma_product (double t, double x, double x_eps, int n);
extern long double __lgamma_productl (long double t, long double x,
				      long double x_eps, int n);

#ifndef math_opt_barrier
# define math_opt_barrier(x) \
({ __typeof (x) __x = (x); __asm ("" : "+m" (__x)); __x; })
# define math_force_eval(x) \
({ __typeof (x) __x = (x); __asm __volatile__ ("" : : "m" (__x)); })
#endif

/* math_narrow_eval reduces its floating-point argument to the range
   and precision of its semantic type.  (The original evaluation may
   still occur with excess range and precision, so the result may be
   affected by double rounding.)  */
#if FLT_EVAL_METHOD == 0
# define math_narrow_eval(x) (x)
#else
# if FLT_EVAL_METHOD == 1
#  define excess_precision(type) __builtin_types_compatible_p (type, float)
# else
#  define excess_precision(type) (__builtin_types_compatible_p (type, float) \
				  || __builtin_types_compatible_p (type, \
								   double))
# endif
# define math_narrow_eval(x)					\
  ({								\
    __typeof (x) math_narrow_eval_tmp = (x);			\
    if (excess_precision (__typeof (math_narrow_eval_tmp)))	\
      __asm__ ("" : "+m" (math_narrow_eval_tmp));		\
    math_narrow_eval_tmp;					\
   })
#endif

#define fabs_tg(x) __builtin_choose_expr			\
  (__builtin_types_compatible_p (__typeof (x), float),		\
   __builtin_fabsf (x),						\
   __builtin_choose_expr					\
   (__builtin_types_compatible_p (__typeof (x), double),	\
    __builtin_fabs (x), __builtin_fabsl (x)))
#define min_of_type(type) __builtin_choose_expr		\
  (__builtin_types_compatible_p (type, float),		\
   FLT_MIN,						\
   __builtin_choose_expr				\
   (__builtin_types_compatible_p (type, double),	\
    DBL_MIN, LDBL_MIN))

/* If X (which is not a NaN) is subnormal, force an underflow
   exception.  */
#define math_check_force_underflow(x)				\
  do								\
    {								\
      __typeof (x) force_underflow_tmp = (x);			\
      if (fabs_tg (force_underflow_tmp)				\
	  < min_of_type (__typeof (force_underflow_tmp)))	\
	{							\
	  __typeof (force_underflow_tmp) force_underflow_tmp2	\
	    = force_underflow_tmp * force_underflow_tmp;	\
	  math_force_eval (force_underflow_tmp2);		\
	}							\
    }								\
  while (0)
/* Likewise, but X is also known to be nonnegative.  */
#define math_check_force_underflow_nonneg(x)			\
  do								\
    {								\
      __typeof (x) force_underflow_tmp = (x);			\
      if (force_underflow_tmp					\
	  < min_of_type (__typeof (force_underflow_tmp)))	\
	{							\
	  __typeof (force_underflow_tmp) force_underflow_tmp2	\
	    = force_underflow_tmp * force_underflow_tmp;	\
	  math_force_eval (force_underflow_tmp2);		\
	}							\
    }								\
  while (0)
/* Likewise, for both real and imaginary parts of a complex
   result.  */
#define math_check_force_underflow_complex(x)				\
  do									\
    {									\
      __typeof (x) force_underflow_complex_tmp = (x);			\
      math_check_force_underflow (__real__ force_underflow_complex_tmp); \
      math_check_force_underflow (__imag__ force_underflow_complex_tmp); \
    }									\
  while (0)

/* The standards only specify one variant of the fenv.h interfaces.
   But at least for some architectures we can be more efficient if we
   know what operations are going to be performed.  Therefore we
   define additional interfaces.  By default they refer to the normal
   interfaces.  */

static __always_inline void
default_libc_feholdexcept (fenv_t *e)
{
  (void) __feholdexcept (e);
}

#ifndef libc_feholdexcept
# define libc_feholdexcept  default_libc_feholdexcept
#endif
#ifndef libc_feholdexceptf
# define libc_feholdexceptf default_libc_feholdexcept
#endif
#ifndef libc_feholdexceptl
# define libc_feholdexceptl default_libc_feholdexcept
#endif

static __always_inline void
default_libc_fesetround (int r)
{
  (void) __fesetround (r);
}

#ifndef libc_fesetround
# define libc_fesetround  default_libc_fesetround
#endif
#ifndef libc_fesetroundf
# define libc_fesetroundf default_libc_fesetround
#endif
#ifndef libc_fesetroundl
# define libc_fesetroundl default_libc_fesetround
#endif

static __always_inline void
default_libc_feholdexcept_setround (fenv_t *e, int r)
{
  __feholdexcept (e);
  __fesetround (r);
}

#ifndef libc_feholdexcept_setround
# define libc_feholdexcept_setround  default_libc_feholdexcept_setround
#endif
#ifndef libc_feholdexcept_setroundf
# define libc_feholdexcept_setroundf default_libc_feholdexcept_setround
#endif
#ifndef libc_feholdexcept_setroundl
# define libc_feholdexcept_setroundl default_libc_feholdexcept_setround
#endif

#ifndef libc_feholdsetround_53bit
# define libc_feholdsetround_53bit libc_feholdsetround
#endif

#ifndef libc_fetestexcept
# define libc_fetestexcept  fetestexcept
#endif
#ifndef libc_fetestexceptf
# define libc_fetestexceptf fetestexcept
#endif
#ifndef libc_fetestexceptl
# define libc_fetestexceptl fetestexcept
#endif

static __always_inline void
default_libc_fesetenv (fenv_t *e)
{
  (void) __fesetenv (e);
}

#ifndef libc_fesetenv
# define libc_fesetenv  default_libc_fesetenv
#endif
#ifndef libc_fesetenvf
# define libc_fesetenvf default_libc_fesetenv
#endif
#ifndef libc_fesetenvl
# define libc_fesetenvl default_libc_fesetenv
#endif

static __always_inline void
default_libc_feupdateenv (fenv_t *e)
{
  (void) __feupdateenv (e);
}

#ifndef libc_feupdateenv
# define libc_feupdateenv  default_libc_feupdateenv
#endif
#ifndef libc_feupdateenvf
# define libc_feupdateenvf default_libc_feupdateenv
#endif
#ifndef libc_feupdateenvl
# define libc_feupdateenvl default_libc_feupdateenv
#endif

#ifndef libc_feresetround_53bit
# define libc_feresetround_53bit libc_feresetround
#endif

static __always_inline int
default_libc_feupdateenv_test (fenv_t *e, int ex)
{
  int ret = fetestexcept (ex);
  __feupdateenv (e);
  return ret;
}

#ifndef libc_feupdateenv_test
# define libc_feupdateenv_test  default_libc_feupdateenv_test
#endif
#ifndef libc_feupdateenv_testf
# define libc_feupdateenv_testf default_libc_feupdateenv_test
#endif
#ifndef libc_feupdateenv_testl
# define libc_feupdateenv_testl default_libc_feupdateenv_test
#endif

/* Save and set the rounding mode.  The use of fenv_t to store the old mode
   allows a target-specific version of this function to avoid converting the
   rounding mode from the fpu format.  By default we have no choice but to
   manipulate the entire env.  */

#ifndef libc_feholdsetround
# define libc_feholdsetround  libc_feholdexcept_setround
#endif
#ifndef libc_feholdsetroundf
# define libc_feholdsetroundf libc_feholdexcept_setroundf
#endif
#ifndef libc_feholdsetroundl
# define libc_feholdsetroundl libc_feholdexcept_setroundl
#endif

/* ... and the reverse.  */

#ifndef libc_feresetround
# define libc_feresetround  libc_feupdateenv
#endif
#ifndef libc_feresetroundf
# define libc_feresetroundf libc_feupdateenvf
#endif
#ifndef libc_feresetroundl
# define libc_feresetroundl libc_feupdateenvl
#endif

/* ... and a version that may also discard exceptions.  */

#ifndef libc_feresetround_noex
# define libc_feresetround_noex  libc_fesetenv
#endif
#ifndef libc_feresetround_noexf
# define libc_feresetround_noexf libc_fesetenvf
#endif
#ifndef libc_feresetround_noexl
# define libc_feresetround_noexl libc_fesetenvl
#endif

#ifndef HAVE_RM_CTX
# define HAVE_RM_CTX 0
#endif

#if HAVE_RM_CTX
/* Set/Restore Rounding Modes only when necessary.  If defined, these functions
   set/restore floating point state only if the state needed within the lexical
   block is different from the current state.  This saves a lot of time when
   the floating point unit is much slower than the fixed point units.  */

# ifndef libc_feholdsetround_noex_ctx
#   define libc_feholdsetround_noex_ctx  libc_feholdsetround_ctx
# endif
# ifndef libc_feholdsetround_noexf_ctx
#   define libc_feholdsetround_noexf_ctx libc_feholdsetroundf_ctx
# endif
# ifndef libc_feholdsetround_noexl_ctx
#   define libc_feholdsetround_noexl_ctx libc_feholdsetroundl_ctx
# endif

# ifndef libc_feresetround_noex_ctx
#   define libc_feresetround_noex_ctx  libc_fesetenv_ctx
# endif
# ifndef libc_feresetround_noexf_ctx
#   define libc_feresetround_noexf_ctx libc_fesetenvf_ctx
# endif
# ifndef libc_feresetround_noexl_ctx
#   define libc_feresetround_noexl_ctx libc_fesetenvl_ctx
# endif

#else

/* Default implementation using standard fenv functions.
   Avoid unnecessary rounding mode changes by first checking the
   current rounding mode.  Note the use of __glibc_unlikely is
   important for performance.  */

static __always_inline void
libc_feholdsetround_ctx (struct rm_ctx *ctx, int round)
{
  ctx->updated_status = false;

  /* Update rounding mode only if different.  */
  if (__glibc_unlikely (round != get_rounding_mode ()))
    {
      ctx->updated_status = true;
      __fegetenv (&ctx->env);
      __fesetround (round);
    }
}

static __always_inline void
libc_feresetround_ctx (struct rm_ctx *ctx)
{
  /* Restore the rounding mode if updated.  */
  if (__glibc_unlikely (ctx->updated_status))
    __feupdateenv (&ctx->env);
}

static __always_inline void
libc_feholdsetround_noex_ctx (struct rm_ctx *ctx, int round)
{
  /* Save exception flags and rounding mode.  */
  __fegetenv (&ctx->env);

  /* Update rounding mode only if different.  */
  if (__glibc_unlikely (round != get_rounding_mode ()))
    __fesetround (round);
}

static __always_inline void
libc_feresetround_noex_ctx (struct rm_ctx *ctx)
{
  /* Restore exception flags and rounding mode.  */
  __fesetenv (&ctx->env);
}

# define libc_feholdsetroundf_ctx libc_feholdsetround_ctx
# define libc_feholdsetroundl_ctx libc_feholdsetround_ctx
# define libc_feresetroundf_ctx   libc_feresetround_ctx
# define libc_feresetroundl_ctx   libc_feresetround_ctx

# define libc_feholdsetround_noexf_ctx libc_feholdsetround_noex_ctx
# define libc_feholdsetround_noexl_ctx libc_feholdsetround_noex_ctx
# define libc_feresetround_noexf_ctx   libc_feresetround_noex_ctx
# define libc_feresetround_noexl_ctx   libc_feresetround_noex_ctx

#endif

#ifndef libc_feholdsetround_53bit_ctx
#  define libc_feholdsetround_53bit_ctx libc_feholdsetround_ctx
#endif
#ifndef libc_feresetround_53bit_ctx
#  define libc_feresetround_53bit_ctx libc_feresetround_ctx
#endif

#define SET_RESTORE_ROUND_GENERIC(RM,ROUNDFUNC,CLEANUPFUNC) \
  struct rm_ctx ctx __attribute__((cleanup (CLEANUPFUNC ## _ctx))); \
  ROUNDFUNC ## _ctx (&ctx, (RM))

/* Set the rounding mode within a lexical block.  Restore the rounding mode to
   the value at the start of the block.  The exception mode must be preserved.
   Exceptions raised within the block must be set in the exception flags.
   Non-stop mode may be enabled inside the block.  */

#define SET_RESTORE_ROUND(RM) \
  SET_RESTORE_ROUND_GENERIC (RM, libc_feholdsetround, libc_feresetround)
#define SET_RESTORE_ROUNDF(RM) \
  SET_RESTORE_ROUND_GENERIC (RM, libc_feholdsetroundf, libc_feresetroundf)
#define SET_RESTORE_ROUNDL(RM) \
  SET_RESTORE_ROUND_GENERIC (RM, libc_feholdsetroundl, libc_feresetroundl)

/* Set the rounding mode within a lexical block.  Restore the rounding mode to
   the value at the start of the block.  The exception mode must be preserved.
   Exceptions raised within the block must be discarded, and exception flags
   are restored to the value at the start of the block.
   Non-stop mode may be enabled inside the block.  */

#define SET_RESTORE_ROUND_NOEX(RM) \
  SET_RESTORE_ROUND_GENERIC (RM, libc_feholdsetround_noex, \
			     libc_feresetround_noex)
#define SET_RESTORE_ROUND_NOEXF(RM) \
  SET_RESTORE_ROUND_GENERIC (RM, libc_feholdsetround_noexf, \
			     libc_feresetround_noexf)
#define SET_RESTORE_ROUND_NOEXL(RM) \
  SET_RESTORE_ROUND_GENERIC (RM, libc_feholdsetround_noexl, \
			     libc_feresetround_noexl)

/* Like SET_RESTORE_ROUND, but also set rounding precision to 53 bits.  */
#define SET_RESTORE_ROUND_53BIT(RM) \
  SET_RESTORE_ROUND_GENERIC (RM, libc_feholdsetround_53bit,	      \
			     libc_feresetround_53bit)

#define __nan(str) \
  (__builtin_constant_p (str) && str[0] == '\0' ? NAN : __nan (str))
#define __nanf(str) \
  (__builtin_constant_p (str) && str[0] == '\0' ? NAN : __nan (str))
#define __nanl(str) \
  (__builtin_constant_p (str) && str[0] == '\0' ? NAN : __nan (str))

#endif /* _MATH_PRIVATE_H_ */