1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
/* __mpn_divmod -- Divide natural numbers, producing both remainder and
quotient.
Copyright (C) 1993, 1994 Free Software Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Library General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
License for more details.
You should have received a copy of the GNU Library General Public License
along with the GNU MP Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "gmp.h"
#include "gmp-impl.h"
#include "longlong.h"
/* Divide num (NUM_PTR/NUM_SIZE) by den (DEN_PTR/DEN_SIZE) and write
the NUM_SIZE-DEN_SIZE least significant quotient limbs at QUOT_PTR
and the DEN_SIZE long remainder at NUM_PTR.
Return the most significant limb of the quotient, this is always 0 or 1.
Argument constraints:
1. The most significant bit of the divisor must be set.
2. QUOT_PTR must either not overlap with the input operands at all, or
QUOT_PTR + DEN_SIZE >= NUM_PTR must hold true. (This means that it's
possible to put the quotient in the high part of NUM, right after the
remainder in NUM. */
mp_limb
#if __STDC__
__mpn_divmod (mp_ptr quot_ptr,
mp_ptr num_ptr, mp_size_t num_size,
mp_srcptr den_ptr, mp_size_t den_size)
#else
__mpn_divmod (quot_ptr, num_ptr, num_size, den_ptr, den_size)
mp_ptr quot_ptr;
mp_ptr num_ptr;
mp_size_t num_size;
mp_srcptr den_ptr;
mp_size_t den_size;
#endif
{
mp_limb most_significant_q_limb = 0;
switch (den_size)
{
case 0:
/* We are asked to divide by zero, so go ahead and do it! (To make
the compiler not remove this statement, return the value.) */
return 1 / den_size;
case 1:
{
mp_size_t i;
mp_limb n1, n0;
mp_limb d;
d = den_ptr[0];
n1 = num_ptr[num_size - 1];
if (n1 >= d)
{
most_significant_q_limb = 1;
n1 -= d;
}
for (i = num_size - 2; i >= 0; i--)
{
n0 = num_ptr[i];
udiv_qrnnd (quot_ptr[i], n1, n1, n0, d);
}
num_ptr[0] = n1;
}
break;
case 2:
{
mp_size_t i;
mp_limb n1, n0, n2;
mp_limb d1, d0;
num_ptr += num_size - 2;
d1 = den_ptr[1];
d0 = den_ptr[0];
n1 = num_ptr[1];
n0 = num_ptr[0];
if (n1 >= d1 && (n1 > d1 || n0 >= d0))
{
most_significant_q_limb = 1;
sub_ddmmss (n1, n0, n1, n0, d1, d0);
}
for (i = num_size - den_size - 1; i >= 0; i--)
{
mp_limb q;
mp_limb r;
num_ptr--;
if (n1 == d1)
{
/* Q should be either 111..111 or 111..110. Need special
treatment of this rare case as normal division would
give overflow. */
q = ~(mp_limb) 0;
r = n0 + d1;
if (r < d1) /* Carry in the addition? */
{
add_ssaaaa (n1, n0, r - d0, num_ptr[0], 0, d0);
quot_ptr[i] = q;
continue;
}
n1 = d0 - (d0 != 0);
n0 = -d0;
}
else
{
udiv_qrnnd (q, r, n1, n0, d1);
umul_ppmm (n1, n0, d0, q);
}
n2 = num_ptr[0];
q_test:
if (n1 > r || (n1 == r && n0 > n2))
{
/* The estimated Q was too large. */
q--;
sub_ddmmss (n1, n0, n1, n0, 0, d0);
r += d1;
if (r >= d1) /* If not carry, test Q again. */
goto q_test;
}
quot_ptr[i] = q;
sub_ddmmss (n1, n0, r, n2, n1, n0);
}
num_ptr[1] = n1;
num_ptr[0] = n0;
}
break;
default:
{
mp_size_t i;
mp_limb dX, d1, n0;
num_ptr += num_size;
den_ptr += den_size;
dX = den_ptr[-1];
d1 = den_ptr[-2];
n0 = num_ptr[-1];
if (n0 >= dX)
{
if (n0 > dX
|| __mpn_cmp (num_ptr - den_size, den_ptr - den_size,
den_size - 1) >= 0)
{
__mpn_sub_n (num_ptr - den_size,
num_ptr - den_size, den_ptr - den_size,
den_size);
most_significant_q_limb = 1;
}
n0 = num_ptr[-1];
}
for (i = num_size - den_size - 1; i >= 0; i--)
{
mp_limb q;
mp_limb n1;
mp_limb cy_limb;
num_ptr--;
if (n0 == dX)
/* This might over-estimate q, but it's probably not worth
the extra code here to find out. */
q = ~(mp_limb) 0;
else
{
mp_limb r;
udiv_qrnnd (q, r, n0, num_ptr[-1], dX);
umul_ppmm (n1, n0, d1, q);
while (n1 > r || (n1 == r && n0 > num_ptr[-2]))
{
q--;
r += dX;
if (r < dX) /* I.e. "carry in previous addition?" */
break;
n1 -= n0 < d1;
n0 -= d1;
}
}
/* Possible optimization: We already have (q * n0) and (1 * n1)
after the calculation of q. Taking advantage of that, we
could make this loop make two iterations less. */
cy_limb = __mpn_submul_1 (num_ptr - den_size,
den_ptr - den_size, den_size, q);
if (num_ptr[0] != cy_limb)
{
mp_limb cy;
cy = __mpn_add_n (num_ptr - den_size,
num_ptr - den_size,
den_ptr - den_size, den_size);
if (cy == 0)
abort ();
q--;
}
quot_ptr[i] = q;
n0 = num_ptr[-1];
}
}
}
return most_significant_q_limb;
}
|