summary refs log tree commit diff
path: root/sysdeps/aarch64/strnlen.S
blob: 5981247dd961e85a19a679d58b23f19da820ce89 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
/* strnlen - calculate the length of a string with limit.

   Copyright (C) 2013-2020 Free Software Foundation, Inc.

   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library.  If not, see
   <https://www.gnu.org/licenses/>.  */

#include <sysdep.h>

/* Assumptions:
 *
 * ARMv8-a, AArch64
 */

/* Arguments and results.  */
#define srcin		x0
#define len		x0
#define limit		x1

/* Locals and temporaries.  */
#define src		x2
#define data1		x3
#define data2		x4
#define data2a		x5
#define has_nul1	x6
#define has_nul2	x7
#define tmp1		x8
#define tmp2		x9
#define tmp3		x10
#define tmp4		x11
#define zeroones	x12
#define pos		x13
#define limit_wd	x14

#define dataq		q2
#define datav		v2
#define datab2		b3
#define dataq2		q3
#define datav2		v3
#define REP8_01 0x0101010101010101
#define REP8_7f 0x7f7f7f7f7f7f7f7f
#define REP8_80 0x8080808080808080

ENTRY_ALIGN_AND_PAD (__strnlen, 6, 9)
	DELOUSE (0)
	DELOUSE (1)
	DELOUSE (2)
	cbz	limit, L(hit_limit)
	mov	zeroones, #REP8_01
	bic	src, srcin, #15
	ands	tmp1, srcin, #15
	b.ne	L(misaligned)
	/* Calculate the number of full and partial words -1.  */
	sub	limit_wd, limit, #1	/* Limit != 0, so no underflow.  */
	lsr	limit_wd, limit_wd, #4	/* Convert to Qwords.  */

	/* NUL detection works on the principle that (X - 1) & (~X) & 0x80
	   (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
	   can be done in parallel across the entire word.  */
	/* The inner loop deals with two Dwords at a time.  This has a
	   slightly higher start-up cost, but we should win quite quickly,
	   especially on cores with a high number of issue slots per
	   cycle, as we get much better parallelism out of the operations.  */

	/* Start of critial section -- keep to one 64Byte cache line.  */

	ldp	data1, data2, [src], #16
L(realigned):
	sub	tmp1, data1, zeroones
	orr	tmp2, data1, #REP8_7f
	sub	tmp3, data2, zeroones
	orr	tmp4, data2, #REP8_7f
	bic	has_nul1, tmp1, tmp2
	bic	has_nul2, tmp3, tmp4
	subs	limit_wd, limit_wd, #1
	orr	tmp1, has_nul1, has_nul2
	ccmp	tmp1, #0, #0, pl	/* NZCV = 0000  */
	b.eq	L(loop)
	/* End of critical section -- keep to one 64Byte cache line.  */

	orr	tmp1, has_nul1, has_nul2
	cbz	tmp1, L(hit_limit)	/* No null in final Qword.  */

	/* We know there's a null in the final Qword.  The easiest thing
	   to do now is work out the length of the string and return
	   MIN (len, limit).  */

	sub	len, src, srcin
	cbz	has_nul1, L(nul_in_data2)
#ifdef __AARCH64EB__
	mov	data2, data1
#endif
	sub	len, len, #8
	mov	has_nul2, has_nul1
L(nul_in_data2):
#ifdef __AARCH64EB__
	/* For big-endian, carry propagation (if the final byte in the
	   string is 0x01) means we cannot use has_nul directly.  The
	   easiest way to get the correct byte is to byte-swap the data
	   and calculate the syndrome a second time.  */
	rev	data2, data2
	sub	tmp1, data2, zeroones
	orr	tmp2, data2, #REP8_7f
	bic	has_nul2, tmp1, tmp2
#endif
	sub	len, len, #8
	rev	has_nul2, has_nul2
	clz	pos, has_nul2
	add	len, len, pos, lsr #3		/* Bits to bytes.  */
	cmp	len, limit
	csel	len, len, limit, ls		/* Return the lower value.  */
	RET

L(loop):
	ldr	dataq, [src], #16
	uminv	datab2, datav.16b
	mov	tmp1, datav2.d[0]
	subs	limit_wd, limit_wd, #1
	ccmp	tmp1, #0, #4, pl	/* NZCV = 0000  */
	b.eq	L(loop_end)
	ldr	dataq, [src], #16
	uminv	datab2, datav.16b
	mov	tmp1, datav2.d[0]
	subs	limit_wd, limit_wd, #1
	ccmp	tmp1, #0, #4, pl	/* NZCV = 0000  */
	b.ne	L(loop)
L(loop_end):
	/* End of critical section -- keep to one 64Byte cache line.  */

	cbnz	tmp1, L(hit_limit)	/* No null in final Qword.  */

	/* We know there's a null in the final Qword.  The easiest thing
	   to do now is work out the length of the string and return
	   MIN (len, limit).  */

#ifdef __AARCH64EB__
	rev64	datav.16b, datav.16b
#endif
	/* Set te NULL byte as 0xff and the rest as 0x00, move the data into a
	   pair of scalars and then compute the length from the earliest NULL
	   byte.  */

	cmeq	datav.16b, datav.16b, #0
	mov	data1, datav.d[0]
	mov	data2, datav.d[1]
	cmp	data1, 0
	csel	data1, data1, data2, ne
	sub	len, src, srcin
	sub	len, len, #16
	rev	data1, data1
	add	tmp2, len, 8
	clz	tmp1, data1
	csel	len, len, tmp2, ne
	add	len, len, tmp1, lsr 3
	cmp	len, limit
	csel	len, len, limit, ls		/* Return the lower value.  */
	RET

L(misaligned):
	/* Deal with a partial first word.
	   We're doing two things in parallel here;
	   1) Calculate the number of words (but avoiding overflow if
	      limit is near ULONG_MAX) - to do this we need to work out
	      limit + tmp1 - 1 as a 65-bit value before shifting it;
	   2) Load and mask the initial data words - we force the bytes
	      before the ones we are interested in to 0xff - this ensures
	      early bytes will not hit any zero detection.  */
	sub	limit_wd, limit, #1
	neg	tmp4, tmp1
	cmp	tmp1, #8

	and	tmp3, limit_wd, #15
	lsr	limit_wd, limit_wd, #4
	mov	tmp2, #~0

	ldp	data1, data2, [src], #16
	lsl	tmp4, tmp4, #3		/* Bytes beyond alignment -> bits.  */
	add	tmp3, tmp3, tmp1

#ifdef __AARCH64EB__
	/* Big-endian.  Early bytes are at MSB.  */
	lsl	tmp2, tmp2, tmp4	/* Shift (tmp1 & 63).  */
#else
	/* Little-endian.  Early bytes are at LSB.  */
	lsr	tmp2, tmp2, tmp4	/* Shift (tmp1 & 63).  */
#endif
	add	limit_wd, limit_wd, tmp3, lsr #4

	orr	data1, data1, tmp2
	orr	data2a, data2, tmp2

	csinv	data1, data1, xzr, le
	csel	data2, data2, data2a, le
	b	L(realigned)

L(hit_limit):
	mov	len, limit
	RET
END (__strnlen)
libc_hidden_def (__strnlen)
weak_alias (__strnlen, strnlen)
libc_hidden_def (strnlen)