about summary refs log tree commit diff
path: root/sysdeps/aarch64/multiarch/memset_a64fx.S
blob: ce54e5418b08c8bc0ecc7affff68a59272ba6397 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
/* Optimized memset for Fujitsu A64FX processor.
   Copyright (C) 2021 Free Software Foundation, Inc.

   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library.  If not, see
   <https://www.gnu.org/licenses/>.  */

#include <sysdep.h>
#include <sysdeps/aarch64/memset-reg.h>

/* Assumptions:
 *
 * ARMv8.2-a, AArch64, unaligned accesses, sve
 *
 */

#define L1_SIZE		(64*1024)	// L1 64KB
#define L2_SIZE         (8*1024*1024)	// L2 8MB - 1MB
#define CACHE_LINE_SIZE	256
#define PF_DIST_L1	(CACHE_LINE_SIZE * 16)	// Prefetch distance L1
#define ZF_DIST		(CACHE_LINE_SIZE * 21)	// Zerofill distance
#define rest		x8
#define vector_length	x9
#define vl_remainder	x10	// vector_length remainder
#define cl_remainder	x11	// CACHE_LINE_SIZE remainder

#if HAVE_AARCH64_SVE_ASM
# if IS_IN (libc)
#  define MEMSET __memset_a64fx

	.arch armv8.2-a+sve

	.macro dc_zva times
	dc	zva, tmp1
	add	tmp1, tmp1, CACHE_LINE_SIZE
	.if \times-1
	dc_zva "(\times-1)"
	.endif
	.endm

	.macro st1b_unroll first=0, last=7
	st1b	z0.b, p0, [dst, #\first, mul vl]
	.if \last-\first
	st1b_unroll "(\first+1)", \last
	.endif
	.endm

	.macro shortcut_for_small_size exit
	// if rest <= vector_length * 2
	whilelo	p0.b, xzr, count
	whilelo	p1.b, vector_length, count
	b.last	1f
	st1b	z0.b, p0, [dstin, #0, mul vl]
	st1b	z0.b, p1, [dstin, #1, mul vl]
	ret
1:	// if rest > vector_length * 8
	cmp	count, vector_length, lsl 3	// vector_length * 8
	b.hi	\exit
	// if rest <= vector_length * 4
	lsl	tmp1, vector_length, 1	// vector_length * 2
	whilelo	p2.b, tmp1, count
	incb	tmp1
	whilelo	p3.b, tmp1, count
	b.last	1f
	st1b	z0.b, p0, [dstin, #0, mul vl]
	st1b	z0.b, p1, [dstin, #1, mul vl]
	st1b	z0.b, p2, [dstin, #2, mul vl]
	st1b	z0.b, p3, [dstin, #3, mul vl]
	ret
1:	// if rest <= vector_length * 8
	lsl	tmp1, vector_length, 2	// vector_length * 4
	whilelo	p4.b, tmp1, count
	incb	tmp1
	whilelo	p5.b, tmp1, count
	b.last	1f
	st1b	z0.b, p0, [dstin, #0, mul vl]
	st1b	z0.b, p1, [dstin, #1, mul vl]
	st1b	z0.b, p2, [dstin, #2, mul vl]
	st1b	z0.b, p3, [dstin, #3, mul vl]
	st1b	z0.b, p4, [dstin, #4, mul vl]
	st1b	z0.b, p5, [dstin, #5, mul vl]
	ret
1:	lsl	tmp1, vector_length, 2	// vector_length * 4
	incb	tmp1			// vector_length * 5
	incb	tmp1			// vector_length * 6
	whilelo	p6.b, tmp1, count
	incb	tmp1
	whilelo	p7.b, tmp1, count
	st1b	z0.b, p0, [dstin, #0, mul vl]
	st1b	z0.b, p1, [dstin, #1, mul vl]
	st1b	z0.b, p2, [dstin, #2, mul vl]
	st1b	z0.b, p3, [dstin, #3, mul vl]
	st1b	z0.b, p4, [dstin, #4, mul vl]
	st1b	z0.b, p5, [dstin, #5, mul vl]
	st1b	z0.b, p6, [dstin, #6, mul vl]
	st1b	z0.b, p7, [dstin, #7, mul vl]
	ret
	.endm

ENTRY (MEMSET)

	PTR_ARG (0)
	SIZE_ARG (2)

	cbnz	count, 1f
	ret
1:	dup	z0.b, valw
	cntb	vector_length
	// shortcut for less than vector_length * 8
	// gives a free ptrue to p0.b for n >= vector_length
	shortcut_for_small_size L(vl_agnostic)
	// end of shortcut

L(vl_agnostic): // VL Agnostic
	mov	rest, count
	mov	dst, dstin
	add	dstend, dstin, count
	// if rest >= L2_SIZE && vector_length == 64 then L(L2)
	mov	tmp1, 64
	cmp	rest, L2_SIZE
	ccmp	vector_length, tmp1, 0, cs
	b.eq	L(L2)
	// if rest >= L1_SIZE && vector_length == 64 then L(L1_prefetch)
	cmp	rest, L1_SIZE
	ccmp	vector_length, tmp1, 0, cs
	b.eq	L(L1_prefetch)

L(unroll32):
	lsl	tmp1, vector_length, 3	// vector_length * 8
	lsl	tmp2, vector_length, 5	// vector_length * 32
	.p2align 3
1:	cmp	rest, tmp2
	b.cc	L(unroll8)
	st1b_unroll
	add	dst, dst, tmp1
	st1b_unroll
	add	dst, dst, tmp1
	st1b_unroll
	add	dst, dst, tmp1
	st1b_unroll
	add	dst, dst, tmp1
	sub	rest, rest, tmp2
	b	1b

L(unroll8):
	lsl	tmp1, vector_length, 3
	.p2align 3
1:	cmp	rest, tmp1
	b.cc	L(last)
	st1b_unroll
	add	dst, dst, tmp1
	sub	rest, rest, tmp1
	b	1b

L(last):
	whilelo	p0.b, xzr, rest
	whilelo	p1.b, vector_length, rest
	b.last	1f
	st1b	z0.b, p0, [dst, #0, mul vl]
	st1b	z0.b, p1, [dst, #1, mul vl]
	ret
1:	lsl	tmp1, vector_length, 1	// vector_length * 2
	whilelo	p2.b, tmp1, rest
	incb	tmp1
	whilelo	p3.b, tmp1, rest
	b.last	1f
	st1b	z0.b, p0, [dst, #0, mul vl]
	st1b	z0.b, p1, [dst, #1, mul vl]
	st1b	z0.b, p2, [dst, #2, mul vl]
	st1b	z0.b, p3, [dst, #3, mul vl]
	ret
1:	lsl	tmp1, vector_length, 2	// vector_length * 4
	whilelo	p4.b, tmp1, rest
	incb	tmp1
	whilelo	p5.b, tmp1, rest
	incb	tmp1
	whilelo	p6.b, tmp1, rest
	incb	tmp1
	whilelo	p7.b, tmp1, rest
	st1b	z0.b, p0, [dst, #0, mul vl]
	st1b	z0.b, p1, [dst, #1, mul vl]
	st1b	z0.b, p2, [dst, #2, mul vl]
	st1b	z0.b, p3, [dst, #3, mul vl]
	st1b	z0.b, p4, [dst, #4, mul vl]
	st1b	z0.b, p5, [dst, #5, mul vl]
	st1b	z0.b, p6, [dst, #6, mul vl]
	st1b	z0.b, p7, [dst, #7, mul vl]
	ret

L(L1_prefetch): // if rest >= L1_SIZE
	.p2align 3
1:	st1b_unroll 0, 3
	prfm	pstl1keep, [dst, PF_DIST_L1]
	st1b_unroll 4, 7
	prfm	pstl1keep, [dst, PF_DIST_L1 + CACHE_LINE_SIZE]
	add	dst, dst, CACHE_LINE_SIZE * 2
	sub	rest, rest, CACHE_LINE_SIZE * 2
	cmp	rest, L1_SIZE
	b.ge	1b
	cbnz	rest, L(unroll32)
	ret

L(L2):
	// align dst address at vector_length byte boundary
	sub	tmp1, vector_length, 1
	ands	tmp2, dst, tmp1
	// if vl_remainder == 0
	b.eq	1f
	sub	vl_remainder, vector_length, tmp2
	// process remainder until the first vector_length boundary
	whilelt	p2.b, xzr, vl_remainder
	st1b	z0.b, p2, [dst]
	add	dst, dst, vl_remainder
	sub	rest, rest, vl_remainder
	// align dstin address at CACHE_LINE_SIZE byte boundary
1:	mov	tmp1, CACHE_LINE_SIZE
	ands	tmp2, dst, CACHE_LINE_SIZE - 1
	// if cl_remainder == 0
	b.eq	L(L2_dc_zva)
	sub	cl_remainder, tmp1, tmp2
	// process remainder until the first CACHE_LINE_SIZE boundary
	mov	tmp1, xzr       // index
2:	whilelt	p2.b, tmp1, cl_remainder
	st1b	z0.b, p2, [dst, tmp1]
	incb	tmp1
	cmp	tmp1, cl_remainder
	b.lo	2b
	add	dst, dst, cl_remainder
	sub	rest, rest, cl_remainder

L(L2_dc_zva):
	// zero fill
	mov	tmp1, dst
	dc_zva	(ZF_DIST / CACHE_LINE_SIZE) - 1
	mov	zva_len, ZF_DIST
	add	tmp1, zva_len, CACHE_LINE_SIZE * 2
	// unroll
	.p2align 3
1:	st1b_unroll 0, 3
	add	tmp2, dst, zva_len
	dc	 zva, tmp2
	st1b_unroll 4, 7
	add	tmp2, tmp2, CACHE_LINE_SIZE
	dc	zva, tmp2
	add	dst, dst, CACHE_LINE_SIZE * 2
	sub	rest, rest, CACHE_LINE_SIZE * 2
	cmp	rest, tmp1	// ZF_DIST + CACHE_LINE_SIZE * 2
	b.ge	1b
	cbnz	rest, L(unroll8)
	ret

END (MEMSET)
libc_hidden_builtin_def (MEMSET)

#endif /* IS_IN (libc) */
#endif /* HAVE_AARCH64_SVE_ASM */