about summary refs log tree commit diff
path: root/sysdeps/aarch64/fpu/sinh_advsimd.c
blob: 3e3b76c502b01e16b04eb2e16a6cc9dd33309d97 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
/* Double-precision vector (Advanced SIMD) sinh function

   Copyright (C) 2024 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <https://www.gnu.org/licenses/>.  */

#include "v_math.h"
#include "poly_advsimd_f64.h"

static const struct data
{
  float64x2_t poly[11], inv_ln2;
  double m_ln2[2];
  float64x2_t shift;
  uint64x2_t halff;
  int64x2_t onef;
#if WANT_SIMD_EXCEPT
  uint64x2_t tiny_bound, thresh;
#else
  uint64x2_t large_bound;
#endif
} data = {
  /* Generated using Remez, deg=12 in [-log(2)/2, log(2)/2].  */
  .poly = { V2 (0x1p-1), V2 (0x1.5555555555559p-3), V2 (0x1.555555555554bp-5),
	    V2 (0x1.111111110f663p-7), V2 (0x1.6c16c16c1b5f3p-10),
	    V2 (0x1.a01a01affa35dp-13), V2 (0x1.a01a018b4ecbbp-16),
	    V2 (0x1.71ddf82db5bb4p-19), V2 (0x1.27e517fc0d54bp-22),
	    V2 (0x1.af5eedae67435p-26), V2 (0x1.1f143d060a28ap-29), },

  .inv_ln2 = V2 (0x1.71547652b82fep0),
  .m_ln2 = {-0x1.62e42fefa39efp-1, -0x1.abc9e3b39803fp-56},
  .shift = V2 (0x1.8p52),

  .halff = V2 (0x3fe0000000000000),
  .onef = V2 (0x3ff0000000000000),
#if WANT_SIMD_EXCEPT
  /* 2^-26, below which sinh(x) rounds to x.  */
  .tiny_bound = V2 (0x3e50000000000000),
  /* asuint(large_bound) - asuint(tiny_bound).  */
  .thresh = V2 (0x0230000000000000),
#else
/* 2^9. expm1 helper overflows for large input.  */
  .large_bound = V2 (0x4080000000000000),
#endif
};

static inline float64x2_t
expm1_inline (float64x2_t x)
{
  const struct data *d = ptr_barrier (&data);

  /* Reduce argument:
     exp(x) - 1 = 2^i * (expm1(f) + 1) - 1
     where i = round(x / ln2)
     and   f = x - i * ln2 (f in [-ln2/2, ln2/2]).  */
  float64x2_t j = vsubq_f64 (vfmaq_f64 (d->shift, d->inv_ln2, x), d->shift);
  int64x2_t i = vcvtq_s64_f64 (j);

  float64x2_t m_ln2 = vld1q_f64 (d->m_ln2);
  float64x2_t f = vfmaq_laneq_f64 (x, j, m_ln2, 0);
  f = vfmaq_laneq_f64 (f, j, m_ln2, 1);
  /* Approximate expm1(f) using polynomial.  */
  float64x2_t f2 = vmulq_f64 (f, f);
  float64x2_t f4 = vmulq_f64 (f2, f2);
  float64x2_t f8 = vmulq_f64 (f4, f4);
  float64x2_t p = vfmaq_f64 (f, f2, v_estrin_10_f64 (f, f2, f4, f8, d->poly));
  /* t = 2^i.  */
  float64x2_t t = vreinterpretq_f64_u64 (
      vreinterpretq_u64_s64 (vaddq_s64 (vshlq_n_s64 (i, 52), d->onef)));
  /* expm1(x) ~= p * t + (t - 1).  */
  return vfmaq_f64 (vsubq_f64 (t, v_f64 (1.0)), p, t);
}

static float64x2_t NOINLINE VPCS_ATTR
special_case (float64x2_t x)
{
  return v_call_f64 (sinh, x, x, v_u64 (-1));
}

/* Approximation for vector double-precision sinh(x) using expm1.
   sinh(x) = (exp(x) - exp(-x)) / 2.
   The greatest observed error is 2.57 ULP:
   _ZGVnN2v_sinh (0x1.9fb1d49d1d58bp-2) got 0x1.ab34e59d678dcp-2
				       want 0x1.ab34e59d678d9p-2.  */
float64x2_t VPCS_ATTR V_NAME_D1 (sinh) (float64x2_t x)
{
  const struct data *d = ptr_barrier (&data);

  float64x2_t ax = vabsq_f64 (x);
  uint64x2_t sign
      = veorq_u64 (vreinterpretq_u64_f64 (x), vreinterpretq_u64_f64 (ax));
  float64x2_t halfsign = vreinterpretq_f64_u64 (vorrq_u64 (sign, d->halff));

#if WANT_SIMD_EXCEPT
  uint64x2_t special = vcgeq_u64 (
      vsubq_u64 (vreinterpretq_u64_f64 (ax), d->tiny_bound), d->thresh);
#else
  uint64x2_t special = vcgeq_u64 (vreinterpretq_u64_f64 (ax), d->large_bound);
#endif

  /* Fall back to scalar variant for all lanes if any of them are special.  */
  if (__glibc_unlikely (v_any_u64 (special)))
    return special_case (x);

  /* Up to the point that expm1 overflows, we can use it to calculate sinh
     using a slight rearrangement of the definition of sinh. This allows us to
     retain acceptable accuracy for very small inputs.  */
  float64x2_t t = expm1_inline (ax);
  t = vaddq_f64 (t, vdivq_f64 (t, vaddq_f64 (t, v_f64 (1.0))));
  return vmulq_f64 (t, halfsign);
}