1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
/* Single-precision AdvSIMD log1p
Copyright (C) 2023 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "v_math.h"
#include "poly_advsimd_f32.h"
const static struct data
{
float32x4_t poly[8], ln2;
uint32x4_t tiny_bound, minus_one, four, thresh;
int32x4_t three_quarters;
} data = {
.poly = { /* Generated using FPMinimax in [-0.25, 0.5]. First two coefficients
(1, -0.5) are not stored as they can be generated more
efficiently. */
V4 (0x1.5555aap-2f), V4 (-0x1.000038p-2f), V4 (0x1.99675cp-3f),
V4 (-0x1.54ef78p-3f), V4 (0x1.28a1f4p-3f), V4 (-0x1.0da91p-3f),
V4 (0x1.abcb6p-4f), V4 (-0x1.6f0d5ep-5f) },
.ln2 = V4 (0x1.62e43p-1f),
.tiny_bound = V4 (0x34000000), /* asuint32(0x1p-23). ulp=0.5 at 0x1p-23. */
.thresh = V4 (0x4b800000), /* asuint32(INFINITY) - tiny_bound. */
.minus_one = V4 (0xbf800000),
.four = V4 (0x40800000),
.three_quarters = V4 (0x3f400000)
};
static inline float32x4_t
eval_poly (float32x4_t m, const float32x4_t *p)
{
/* Approximate log(1+m) on [-0.25, 0.5] using split Estrin scheme. */
float32x4_t p_12 = vfmaq_f32 (v_f32 (-0.5), m, p[0]);
float32x4_t p_34 = vfmaq_f32 (p[1], m, p[2]);
float32x4_t p_56 = vfmaq_f32 (p[3], m, p[4]);
float32x4_t p_78 = vfmaq_f32 (p[5], m, p[6]);
float32x4_t m2 = vmulq_f32 (m, m);
float32x4_t p_02 = vfmaq_f32 (m, m2, p_12);
float32x4_t p_36 = vfmaq_f32 (p_34, m2, p_56);
float32x4_t p_79 = vfmaq_f32 (p_78, m2, p[7]);
float32x4_t m4 = vmulq_f32 (m2, m2);
float32x4_t p_06 = vfmaq_f32 (p_02, m4, p_36);
return vfmaq_f32 (p_06, m4, vmulq_f32 (m4, p_79));
}
static float32x4_t NOINLINE VPCS_ATTR
special_case (float32x4_t x, float32x4_t y, uint32x4_t special)
{
return v_call_f32 (log1pf, x, y, special);
}
/* Vector log1pf approximation using polynomial on reduced interval. Accuracy
is roughly 2.02 ULP:
log1pf(0x1.21e13ap-2) got 0x1.fe8028p-3 want 0x1.fe802cp-3. */
VPCS_ATTR float32x4_t V_NAME_F1 (log1p) (float32x4_t x)
{
const struct data *d = ptr_barrier (&data);
uint32x4_t ix = vreinterpretq_u32_f32 (x);
uint32x4_t ia = vreinterpretq_u32_f32 (vabsq_f32 (x));
uint32x4_t special_cases
= vorrq_u32 (vcgeq_u32 (vsubq_u32 (ia, d->tiny_bound), d->thresh),
vcgeq_u32 (ix, d->minus_one));
float32x4_t special_arg = x;
#if WANT_SIMD_EXCEPT
if (__glibc_unlikely (v_any_u32 (special_cases)))
/* Side-step special lanes so fenv exceptions are not triggered
inadvertently. */
x = v_zerofy_f32 (x, special_cases);
#endif
/* With x + 1 = t * 2^k (where t = m + 1 and k is chosen such that m
is in [-0.25, 0.5]):
log1p(x) = log(t) + log(2^k) = log1p(m) + k*log(2).
We approximate log1p(m) with a polynomial, then scale by
k*log(2). Instead of doing this directly, we use an intermediate
scale factor s = 4*k*log(2) to ensure the scale is representable
as a normalised fp32 number. */
float32x4_t m = vaddq_f32 (x, v_f32 (1.0f));
/* Choose k to scale x to the range [-1/4, 1/2]. */
int32x4_t k
= vandq_s32 (vsubq_s32 (vreinterpretq_s32_f32 (m), d->three_quarters),
v_s32 (0xff800000));
uint32x4_t ku = vreinterpretq_u32_s32 (k);
/* Scale x by exponent manipulation. */
float32x4_t m_scale
= vreinterpretq_f32_u32 (vsubq_u32 (vreinterpretq_u32_f32 (x), ku));
/* Scale up to ensure that the scale factor is representable as normalised
fp32 number, and scale m down accordingly. */
float32x4_t s = vreinterpretq_f32_u32 (vsubq_u32 (d->four, ku));
m_scale = vaddq_f32 (m_scale, vfmaq_f32 (v_f32 (-1.0f), v_f32 (0.25f), s));
/* Evaluate polynomial on the reduced interval. */
float32x4_t p = eval_poly (m_scale, d->poly);
/* The scale factor to be applied back at the end - by multiplying float(k)
by 2^-23 we get the unbiased exponent of k. */
float32x4_t scale_back = vcvtq_f32_s32 (vshrq_n_s32 (k, 23));
/* Apply the scaling back. */
float32x4_t y = vfmaq_f32 (p, scale_back, d->ln2);
if (__glibc_unlikely (v_any_u32 (special_cases)))
return special_case (special_arg, y, special_cases);
return y;
}
libmvec_hidden_def (V_NAME_F1 (log1p))
HALF_WIDTH_ALIAS_F1 (log1p)
|