about summary refs log tree commit diff
path: root/sysdeps/aarch64/fpu/exp_sve.c
blob: 02304c38b4be59363e63021e3bab1c5ae1ac0c8d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
/* Double-precision vector (SVE) exp function.

   Copyright (C) 2023 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <https://www.gnu.org/licenses/>.  */

#include "sv_math.h"

static const struct data
{
  double poly[4];
  double ln2_hi, ln2_lo, inv_ln2, shift, thres;
} data = {
  .poly = { /* ulp error: 0.53.  */
	    0x1.fffffffffdbcdp-2, 0x1.555555555444cp-3, 0x1.555573c6a9f7dp-5,
	    0x1.1111266d28935p-7 },
  .ln2_hi = 0x1.62e42fefa3800p-1,
  .ln2_lo = 0x1.ef35793c76730p-45,
  /* 1/ln2.  */
  .inv_ln2 = 0x1.71547652b82fep+0,
  /* 1.5*2^46+1023. This value is further explained below.  */
  .shift = 0x1.800000000ffc0p+46,
  .thres = 704.0,
};

#define C(i) sv_f64 (d->poly[i])
#define SpecialOffset 0x6000000000000000 /* 0x1p513.  */
/* SpecialBias1 + SpecialBias1 = asuint(1.0).  */
#define SpecialBias1 0x7000000000000000 /* 0x1p769.  */
#define SpecialBias2 0x3010000000000000 /* 0x1p-254.  */

/* Update of both special and non-special cases, if any special case is
   detected.  */
static inline svfloat64_t
special_case (svbool_t pg, svfloat64_t s, svfloat64_t y, svfloat64_t n)
{
  /* s=2^n may overflow, break it up into s=s1*s2,
     such that exp = s + s*y can be computed as s1*(s2+s2*y)
     and s1*s1 overflows only if n>0.  */

  /* If n<=0 then set b to 0x6, 0 otherwise.  */
  svbool_t p_sign = svcmple (pg, n, 0.0); /* n <= 0.  */
  svuint64_t b
      = svdup_u64_z (p_sign, SpecialOffset); /* Inactive lanes set to 0.  */

  /* Set s1 to generate overflow depending on sign of exponent n.  */
  svfloat64_t s1 = svreinterpret_f64 (
      svsubr_x (pg, b, SpecialBias1)); /* 0x70...0 - b.  */
  /* Offset s to avoid overflow in final result if n is below threshold.  */
  svfloat64_t s2 = svreinterpret_f64 (
      svadd_x (pg, svsub_x (pg, svreinterpret_u64 (s), SpecialBias2),
	       b)); /* as_u64 (s) - 0x3010...0 + b.  */

  /* |n| > 1280 => 2^(n) overflows.  */
  svbool_t p_cmp = svacgt (pg, n, 1280.0);

  svfloat64_t r1 = svmul_x (pg, s1, s1);
  svfloat64_t r2 = svmla_x (pg, s2, s2, y);
  svfloat64_t r0 = svmul_x (pg, r2, s1);

  return svsel (p_cmp, r1, r0);
}

/* SVE exp algorithm. Maximum measured error is 1.01ulps:
   SV_NAME_D1 (exp)(0x1.4619d7b04da41p+6) got 0x1.885d9acc41da7p+117
					 want 0x1.885d9acc41da6p+117.  */
svfloat64_t SV_NAME_D1 (exp) (svfloat64_t x, const svbool_t pg)
{
  const struct data *d = ptr_barrier (&data);

  svbool_t special = svacgt (pg, x, d->thres);

  /* Use a modifed version of the shift used for flooring, such that x/ln2 is
     rounded to a multiple of 2^-6=1/64, shift = 1.5 * 2^52 * 2^-6 = 1.5 *
     2^46.

     n is not an integer but can be written as n = m + i/64, with i and m
     integer, 0 <= i < 64 and m <= n.

     Bits 5:0 of z will be null every time x/ln2 reaches a new integer value
     (n=m, i=0), and is incremented every time z (or n) is incremented by 1/64.
     FEXPA expects i in bits 5:0 of the input so it can be used as index into
     FEXPA hardwired table T[i] = 2^(i/64) for i = 0:63, that will in turn
     populate the mantissa of the output. Therefore, we use u=asuint(z) as
     input to FEXPA.

     We add 1023 to the modified shift value in order to set bits 16:6 of u to
     1, such that once these bits are moved to the exponent of the output of
     FEXPA, we get the exponent of 2^n right, i.e. we get 2^m.  */
  svfloat64_t z = svmla_x (pg, sv_f64 (d->shift), x, d->inv_ln2);
  svuint64_t u = svreinterpret_u64 (z);
  svfloat64_t n = svsub_x (pg, z, d->shift);

  /* r = x - n * ln2, r is in [-ln2/(2N), ln2/(2N)].  */
  svfloat64_t ln2 = svld1rq (svptrue_b64 (), &d->ln2_hi);
  svfloat64_t r = svmls_lane (x, n, ln2, 0);
  r = svmls_lane (r, n, ln2, 1);

  /* y = exp(r) - 1 ~= r + C0 r^2 + C1 r^3 + C2 r^4 + C3 r^5.  */
  svfloat64_t r2 = svmul_x (pg, r, r);
  svfloat64_t p01 = svmla_x (pg, C (0), C (1), r);
  svfloat64_t p23 = svmla_x (pg, C (2), C (3), r);
  svfloat64_t p04 = svmla_x (pg, p01, p23, r2);
  svfloat64_t y = svmla_x (pg, r, p04, r2);

  /* s = 2^n, computed using FEXPA. FEXPA does not propagate NaNs, so for
     consistent NaN handling we have to manually propagate them. This comes at
     significant performance cost.  */
  svfloat64_t s = svexpa (u);

  /* Assemble result as exp(x) = 2^n * exp(r).  If |x| > Thresh the
     multiplication may overflow, so use special case routine.  */

  if (__glibc_unlikely (svptest_any (pg, special)))
    {
      /* FEXPA zeroes the sign bit, however the sign is meaningful to the
	 special case function so needs to be copied.
	 e = sign bit of u << 46.  */
      svuint64_t e = svand_x (pg, svlsl_x (pg, u, 46), 0x8000000000000000);
      /* Copy sign to s.  */
      s = svreinterpret_f64 (svadd_x (pg, e, svreinterpret_u64 (s)));
      return special_case (pg, s, y, n);
    }

  /* No special case.  */
  return svmla_x (pg, s, s, y);
}