1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
|
/* Double-precision vector (SVE) cbrt function
Copyright (C) 2024 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "sv_math.h"
#include "poly_sve_f64.h"
const static struct data
{
float64_t poly[4];
float64_t table[5];
float64_t one_third, two_thirds, shift;
int64_t exp_bias;
uint64_t tiny_bound, thresh;
} data = {
/* Generated with FPMinimax in [0.5, 1]. */
.poly = { 0x1.c14e8ee44767p-2, 0x1.dd2d3f99e4c0ep-1, -0x1.08e83026b7e74p-1,
0x1.2c74eaa3ba428p-3, },
/* table[i] = 2^((i - 2) / 3). */
.table = { 0x1.428a2f98d728bp-1, 0x1.965fea53d6e3dp-1, 0x1p0,
0x1.428a2f98d728bp0, 0x1.965fea53d6e3dp0, },
.one_third = 0x1.5555555555555p-2,
.two_thirds = 0x1.5555555555555p-1,
.shift = 0x1.8p52,
.exp_bias = 1022,
.tiny_bound = 0x0010000000000000, /* Smallest normal. */
.thresh = 0x7fe0000000000000, /* asuint64 (infinity) - tiny_bound. */
};
#define MantissaMask 0x000fffffffffffff
#define HalfExp 0x3fe0000000000000
static svfloat64_t NOINLINE
special_case (svfloat64_t x, svfloat64_t y, svbool_t special)
{
return sv_call_f64 (cbrt, x, y, special);
}
static inline svfloat64_t
shifted_lookup (const svbool_t pg, const float64_t *table, svint64_t i)
{
return svld1_gather_index (pg, table, svadd_x (pg, i, 2));
}
/* Approximation for double-precision vector cbrt(x), using low-order
polynomial and two Newton iterations. Greatest observed error is 1.79 ULP.
Errors repeat according to the exponent, for instance an error observed for
double value m * 2^e will be observed for any input m * 2^(e + 3*i), where i
is an integer.
_ZGVsMxv_cbrt (0x0.3fffb8d4413f3p-1022) got 0x1.965f53b0e5d97p-342
want 0x1.965f53b0e5d95p-342. */
svfloat64_t SV_NAME_D1 (cbrt) (svfloat64_t x, const svbool_t pg)
{
const struct data *d = ptr_barrier (&data);
svfloat64_t ax = svabs_x (pg, x);
svuint64_t iax = svreinterpret_u64 (ax);
svuint64_t sign = sveor_x (pg, svreinterpret_u64 (x), iax);
/* Subnormal, +/-0 and special values. */
svbool_t special = svcmpge (pg, svsub_x (pg, iax, d->tiny_bound), d->thresh);
/* Decompose |x| into m * 2^e, where m is in [0.5, 1.0]. This is a vector
version of frexp, which gets subnormal values wrong - these have to be
special-cased as a result. */
svfloat64_t m = svreinterpret_f64 (svorr_x (
pg, svand_x (pg, svreinterpret_u64 (x), MantissaMask), HalfExp));
svint64_t e
= svsub_x (pg, svreinterpret_s64 (svlsr_x (pg, iax, 52)), d->exp_bias);
/* Calculate rough approximation for cbrt(m) in [0.5, 1.0], starting point
for Newton iterations. */
svfloat64_t p
= sv_pairwise_poly_3_f64_x (pg, m, svmul_x (pg, m, m), d->poly);
/* Two iterations of Newton's method for iteratively approximating cbrt. */
svfloat64_t m_by_3 = svmul_x (pg, m, d->one_third);
svfloat64_t a = svmla_x (pg, svdiv_x (pg, m_by_3, svmul_x (pg, p, p)), p,
d->two_thirds);
a = svmla_x (pg, svdiv_x (pg, m_by_3, svmul_x (pg, a, a)), a, d->two_thirds);
/* Assemble the result by the following:
cbrt(x) = cbrt(m) * 2 ^ (e / 3).
We can get 2 ^ round(e / 3) using ldexp and integer divide, but since e is
not necessarily a multiple of 3 we lose some information.
Let q = 2 ^ round(e / 3), then t = 2 ^ (e / 3) / q.
Then we know t = 2 ^ (i / 3), where i is the remainder from e / 3, which
is an integer in [-2, 2], and can be looked up in the table T. Hence the
result is assembled as:
cbrt(x) = cbrt(m) * t * 2 ^ round(e / 3) * sign. */
svfloat64_t eb3f = svmul_x (pg, svcvt_f64_x (pg, e), d->one_third);
svint64_t ey = svcvt_s64_x (pg, eb3f);
svint64_t em3 = svmls_x (pg, e, ey, 3);
svfloat64_t my = shifted_lookup (pg, d->table, em3);
my = svmul_x (pg, my, a);
/* Vector version of ldexp. */
svfloat64_t y = svscale_x (pg, my, ey);
if (__glibc_unlikely (svptest_any (pg, special)))
return special_case (
x, svreinterpret_f64 (svorr_x (pg, svreinterpret_u64 (y), sign)),
special);
/* Copy sign. */
return svreinterpret_f64 (svorr_x (pg, svreinterpret_u64 (y), sign));
}
|