about summary refs log tree commit diff
path: root/scripts/vcs_to_changelog/frontend_c.py
blob: 8e37c5fa471db0d15a7851e89d2d8aa3b1d36563 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
#!/usr/bin/python3
# The C Parser.
# Copyright (C) 2019-2020 Free Software Foundation, Inc.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <https://www.gnu.org/licenses/>.

from enum import Enum
import re
from vcs_to_changelog.misc_util import *

class block_flags(Enum):
    ''' Flags for the code block.
    '''
    else_block = 1
    macro_defined = 2
    macro_redefined = 3


class block_type(Enum):
    ''' Type of code block.
    '''
    file = 1
    macro_cond = 2
    macro_def = 3
    macro_undef = 4
    macro_include = 5
    macro_info = 6
    decl = 7
    func = 8
    composite = 9
    macrocall = 10
    fndecl = 11
    assign = 12
    struct = 13
    union = 14
    enum = 15

# A dictionary describing what each action (add, modify, delete) show up as in
# the ChangeLog output.
actions = {0:{'new': 'New', 'mod': 'Modified', 'del': 'Remove'},
           block_type.file:{'new': 'New file', 'mod': 'Modified file',
                            'del': 'Remove file'},
           block_type.macro_cond:{'new': 'New', 'mod': 'Modified',
                                  'del': 'Remove'},
           block_type.macro_def:{'new': 'New', 'mod': 'Modified',
                                 'del': 'Remove'},
           block_type.macro_include:{'new': 'Include file', 'mod': 'Modified',
                                     'del': 'Remove include'},
           block_type.macro_info:{'new': 'New preprocessor message',
                                  'mod': 'Modified', 'del': 'Remove'},
           block_type.decl:{'new': 'New', 'mod': 'Modified', 'del': 'Remove'},
           block_type.func:{'new': 'New function', 'mod': 'Modified function',
                 'del': 'Remove function'},
           block_type.composite:{'new': 'New', 'mod': 'Modified',
                                 'del': 'Remove'},
           block_type.struct:{'new': 'New struct', 'mod': 'Modified struct',
                                 'del': 'Remove struct'},
           block_type.union:{'new': 'New union', 'mod': 'Modified union',
                                 'del': 'Remove union'},
           block_type.enum:{'new': 'New enum', 'mod': 'Modified enum',
                                 'del': 'Remove enum'},
           block_type.macrocall:{'new': 'New', 'mod': 'Modified',
                                 'del': 'Remove'},
           block_type.fndecl:{'new': 'New function', 'mod': 'Modified',
                              'del': 'Remove'},
           block_type.assign:{'new': 'New', 'mod': 'Modified', 'del': 'Remove'}}

def new_block(name, type, contents, parent, flags = 0):
    '''  Create a new code block with the parent as PARENT.

    The code block is a basic structure around which the tree representation of
    the source code is built.  It has the following attributes:

    - name: A name to refer it by in the ChangeLog
    - type: Any one of the following types in BLOCK_TYPE.
    - contents: The contents of the block.  For a block of types file or
      macro_cond, this would be a list of blocks that it nests.  For other types
      it is a list with a single string specifying its contents.
    - parent: This is the parent of the current block, useful in setting up
      #elif or #else blocks in the tree.
    - flags: A special field to indicate some properties of the block. See
      BLOCK_FLAGS for values.
    '''
    block = {}
    block['matched'] = False
    block['name'] = name
    block['type'] = type
    block['contents'] = contents
    block['parent'] = parent
    if parent:
        parent['contents'].append(block)

    block['flags'] = flags
    block['actions'] = actions[type]

    return block


class ExprParser:
    ''' Parent class of all of the C expression parsers.

    It is necessary that the children override the parse_line() method.
    '''
    ATTRIBUTE = r'(((__attribute__\s*\(\([^;]+\)\))|(asm\s*\([?)]+\)))\s*)*'

    def __init__(self, project_quirks, debug):
        self.project_quirks = project_quirks
        self.debug = debug

    def fast_forward_scope(self, cur, op, loc):
        ''' Consume lines in a code block.

        Consume all lines of a block of code such as a composite type declaration or
        a function declaration.

        - CUR is the string to consume this expression from
        - OP is the string array for the file
        - LOC is the first unread location in CUR

        - Returns: The next location to be read in the array as well as the updated
          value of CUR, which will now have the body of the function or composite
          type.
        '''
        nesting = cur.count('{') - cur.count('}')
        while nesting > 0 and loc < len(op):
            cur = cur + ' ' + op[loc]

            nesting = nesting + op[loc].count('{')
            nesting = nesting - op[loc].count('}')
            loc = loc + 1

        return (cur, loc)

    def parse_line(self, cur, op, loc, code, macros):
        ''' The parse method should always be overridden by the child.
        '''
        raise


class FuncParser(ExprParser):
    REGEX = re.compile(ExprParser.ATTRIBUTE + r'\s*(\w+)\s*\([^(][^{]+\)\s*{')

    def parse_line(self, cur, op, loc, code, macros):
        ''' Parse a function.

        Match a function definition.

        - CUR is the string to consume this expression from
        - OP is the string array for the file
        - LOC is the first unread location in CUR
        - CODE is the block to which we add this

        - Returns: The next location to be read in the array.
        '''
        found = re.search(self.REGEX, cur)
        if not found:
            return cur, loc

        name = found.group(5)
        self.debug.print('FOUND FUNC: %s' % name)

        # Consume everything up to the ending brace of the function.
        (cur, loc) = self.fast_forward_scope(cur, op, loc)

        new_block(name, block_type.func, [cur], code)

        return '', loc


class CompositeParser(ExprParser):
    # Composite types such as structs and unions.
    REGEX = re.compile(r'(struct|union|enum)\s*(\w*)\s*{')

    def parse_line(self, cur, op, loc, code, macros):
        ''' Parse a composite type.

        Match declaration of a composite type such as a sruct or a union..

        - CUR is the string to consume this expression from
        - OP is the string array for the file
        - LOC is the first unread location in CUR
        - CODE is the block to which we add this

        - Returns: The next location to be read in the array.
        '''
        found = re.search(self.REGEX, cur)
        if not found:
            return cur, loc

        # Lap up all of the struct definition.
        (cur, loc) = self.fast_forward_scope(cur, op, loc)

        name = found.group(2)

        if not name:
            if 'typedef' in cur:
                name = re.sub(r'.*}\s*(\w+);$', r'\1', cur)
            else:
                name= '<anoymous>'

        ctype = found.group(1)

        if ctype == 'struct':
            blocktype = block_type.struct
        if ctype == 'enum':
            blocktype = block_type.enum
        if ctype == 'union':
            blocktype = block_type.union

        new_block(name, block_type.composite, [cur], code)

        return '', loc


class AssignParser(ExprParser):
    # Static assignments.
    REGEX = re.compile(r'(\w+)\s*(\[[^\]]*\])*\s*([^\s]*attribute[\s\w()]+)?\s*=')

    def parse_line(self, cur, op, loc, code, macros):
        ''' Parse an assignment statement.

        This includes array assignments.

        - CUR is the string to consume this expression from
        - OP is the string array for the file
        - LOC is the first unread location in CUR
        - CODE is the block to which we add this

        - Returns: The next location to be read in the array.
        '''
        found = re.search(self.REGEX, cur)
        if not found:
            return cur, loc

        name = found.group(1)
        self.debug.print('FOUND ASSIGN: %s' % name)
        # Lap up everything up to semicolon.
        while ';' not in cur and loc < len(op):
            cur = op[loc]
            loc = loc + 1

        new_block(name, block_type.assign, [cur], code)

        return '', loc


class DeclParser(ExprParser):
    # Function pointer typedefs.
    TYPEDEF_FN_RE = re.compile(r'\(\*(\w+)\)\s*\([^)]+\);')

    # Simple decls.
    DECL_RE = re.compile(r'(\w+)(\[\w*\])*\s*' + ExprParser.ATTRIBUTE + ';')

    # __typeof decls.
    TYPEOF_RE = re.compile(r'__typeof\s*\([\w\s]+\)\s*(\w+)\s*' + \
                           ExprParser.ATTRIBUTE + ';')

    # Function Declarations.
    FNDECL_RE = re.compile(r'\s*(\w+)\s*\([^\(][^;]*\)\s*' +
                           ExprParser.ATTRIBUTE + ';')

    def __init__(self, regex, blocktype, project_quirks, debug):
        # The regex for the current instance.
        self.REGEX = regex
        self.blocktype = blocktype
        super().__init__(project_quirks, debug)

    def parse_line(self, cur, op, loc, code, macros):
        ''' Parse a top level declaration.

        All types of declarations except function declarations.

        - CUR is the string to consume this expression from
        - OP is the string array for the file
        - LOC is the first unread location in CUR
        - CODE is the block to which we add this function

        - Returns: The next location to be read in the array.
        '''
        found = re.search(self.REGEX, cur)
        if not found:
            return cur, loc

        # The name is the first group for all of the above regexes.  This is a
        # coincidence, so care must be taken if regexes are added or changed to
        # ensure that this is true.
        name = found.group(1)

        self.debug.print('FOUND DECL: %s' % name)
        new_block(name, self.blocktype, [cur], code)

        return '', loc


class MacroParser(ExprParser):
    # The macrocall_re peeks into the next line to ensure that it doesn't
    # eat up a FUNC by accident.  The func_re regex is also quite crude and
    # only intends to ensure that the function name gets picked up
    # correctly.
    MACROCALL_RE = re.compile(r'(\w+)\s*(\(.*\))*$')

    def parse_line(self, cur, op, loc, code, macros):
        ''' Parse a macro call.

        Match a symbol hack macro calls that get added without semicolons.

        - CUR is the string to consume this expression from
        - OP is the string array for the file
        - LOC is the first unread location in CUR
        - CODE is the block to which we add this
        - MACROS is the regex match object.

        - Returns: The next location to be read in the array.
        '''

        # First we have the macros for symbol hacks and all macros we identified so
        # far.
        if cur.count('(') != cur.count(')'):
            return cur, loc
        if loc < len(op) and '{' in op[loc]:
            return cur, loc

        found = re.search(self.MACROCALL_RE, cur)
        if found:
            sym = found.group(1)
            name = found.group(2)
            if sym in macros or self.project_quirks and \
                    sym in self.project_quirks.C_MACROS:
                self.debug.print('FOUND MACROCALL: %s (%s)' % (sym, name))
                new_block(sym, block_type.macrocall, [cur], code)
                return '', loc

        # Next, there could be macros that get called right inside their #ifdef, but
        # without the semi-colon.
        if cur.strip() == code['name'].strip():
            self.debug.print('FOUND MACROCALL (without brackets): %s' % (cur))
            new_block(cur, block_type.macrocall, [cur], code)
            return '',loc

        return cur, loc


class Frontend:
    ''' The C Frontend implementation.
    '''
    KNOWN_MACROS = []

    def __init__(self, project_quirks, debug):
        self.op = []
        self.debug = debug
        self.project_quirks = project_quirks

        self.c_expr_parsers = [
                CompositeParser(project_quirks, debug),
                AssignParser(project_quirks, debug),
                DeclParser(DeclParser.TYPEOF_RE, block_type.decl,
                           project_quirks, debug),
                DeclParser(DeclParser.TYPEDEF_FN_RE, block_type.decl,
                           project_quirks, debug),
                DeclParser(DeclParser.FNDECL_RE, block_type.fndecl,
                           project_quirks, debug),
                FuncParser(project_quirks, debug),
                DeclParser(DeclParser.DECL_RE, block_type.decl, project_quirks,
                           debug),
                MacroParser(project_quirks, debug)]


    def remove_extern_c(self):
        ''' Process extern "C"/"C++" block nesting.

        The extern "C" nesting does not add much value so it's safe to almost always
        drop it.  Also drop extern "C++"
        '''
        new_op = []
        nesting = 0
        extern_nesting = 0
        for l in self.op:
            if '{' in l:
                nesting = nesting + 1
            if re.match(r'extern\s*"C"\s*{', l):
                extern_nesting = nesting
                continue
            if '}' in l:
                nesting = nesting - 1
                if nesting < extern_nesting:
                    extern_nesting = 0
                    continue
            new_op.append(l)

        # Now drop all extern C++ blocks.
        self.op = new_op
        new_op = []
        nesting = 0
        extern_nesting = 0
        in_cpp = False
        for l in self.op:
            if re.match(r'extern\s*"C\+\+"\s*{', l):
                nesting = nesting + 1
                in_cpp = True

            if in_cpp:
                if '{' in l:
                    nesting = nesting + 1
                if '}' in l:
                    nesting = nesting - 1
            if nesting == 0:
                new_op.append(l)

        self.op = new_op


    def remove_comments(self, op):
        ''' Remove comments.

        Return OP by removing all comments from it.
        '''
        self.debug.print('REMOVE COMMENTS')

        sep='\n'
        opstr = sep.join(op)
        opstr = re.sub(r'/\*.*?\*/', r'', opstr, flags=re.MULTILINE | re.DOTALL)
        opstr = re.sub(r'\\\n', r' ', opstr, flags=re.MULTILINE | re.DOTALL)
        new_op = list(filter(None, opstr.split(sep)))

        return new_op


    def normalize_condition(self, name):
        ''' Make some minor transformations on macro conditions to make them more
        readable.
        '''
        # Negation with a redundant bracket.
        name = re.sub(r'!\s*\(\s*(\w+)\s*\)', r'! \1', name)
        # Pull in negation of equality.
        name = re.sub(r'!\s*\(\s*(\w+)\s*==\s*(\w+)\)', r'\1 != \2', name)
        # Pull in negation of inequality.
        name = re.sub(r'!\s*\(\s*(\w+)\s*!=\s*(\w+)\)', r'\1 == \2', name)
        # Fix simple double negation.
        name = re.sub(r'!\s*\(\s*!\s*(\w+)\s*\)', r'\1', name)
        # Similar, but nesting a complex expression.  Because of the greedy match,
        # this matches only the outermost brackets.
        name = re.sub(r'!\s*\(\s*!\s*\((.*)\)\s*\)$', r'\1', name)
        return name


    def parse_preprocessor(self, loc, code, start = ''):
        ''' Parse a preprocessor directive.

        In case a preprocessor condition (i.e. if/elif/else), create a new code
        block to nest code into and in other cases, identify and add entities suchas
        include files, defines, etc.

        - OP is the string array for the file
        - LOC is the first unread location in CUR
        - CODE is the block to which we add this function
        - START is the string that should continue to be expanded in case we step
          into a new macro scope.

        - Returns: The next location to be read in the array.
        '''
        cur = self.op[loc]
        loc = loc + 1
        endblock = False

        self.debug.print('PARSE_MACRO: %s' % cur)

        # Remove the # and strip spaces again.
        cur = cur[1:].strip()

        # Include file.
        if cur.find('include') == 0:
            m = re.search(r'include\s*["<]?([^">]+)[">]?', cur)
            new_block(m.group(1), block_type.macro_include, [cur], code)

        # Macro definition.
        if cur.find('define') == 0:
            m = re.search(r'define\s+([a-zA-Z0-9_]+)', cur)
            name = m.group(1)
            exists = False
            # Find out if this is a redefinition.
            for c in code['contents']:
                if c['name'] == name and c['type'] == block_type.macro_def:
                    c['flags'] = block_flags.macro_redefined
                    exists = True
                    break
            if not exists:
                new_block(m.group(1), block_type.macro_def, [cur], code,
                          block_flags.macro_defined)
                # Add macros as we encounter them.
                self.KNOWN_MACROS.append(m.group(1))

        # Macro undef.
        if cur.find('undef') == 0:
            m = re.search(r'undef\s+([a-zA-Z0-9_]+)', cur)
            new_block(m.group(1), block_type.macro_def, [cur], code)

        # #error and #warning macros.
        if cur.find('error') == 0 or cur.find('warning') == 0:
            m = re.search(r'(error|warning)\s+"?(.*)"?', cur)
            if m:
                name = m.group(2)
            else:
                name = '<blank>'
            new_block(name, block_type.macro_info, [cur], code)

        # Start of an #if or #ifdef block.
        elif cur.find('if') == 0:
            rem = re.sub(r'ifndef', r'!', cur).strip()
            rem = re.sub(r'(ifdef|defined|if)', r'', rem).strip()
            rem = self.normalize_condition(rem)
            ifdef = new_block(rem, block_type.macro_cond, [], code)
            ifdef['headcond'] = ifdef
            ifdef['start'] = start
            loc = self.parse_line(loc, ifdef, start)

        # End the previous #if/#elif and begin a new block.
        elif cur.find('elif') == 0 and code['parent']:
            rem = self.normalize_condition(re.sub(r'(elif|defined)', r'', cur).strip())
            # The #else and #elif blocks should go into the current block's parent.
            ifdef = new_block(rem, block_type.macro_cond, [], code['parent'])
            ifdef['headcond'] = code['headcond']
            loc = self.parse_line(loc, ifdef, code['headcond']['start'])
            endblock = True

        # End the previous #if/#elif and begin a new block.
        elif cur.find('else') == 0 and code['parent']:
            name = self.normalize_condition('!(' + code['name'] + ')')
            ifdef = new_block(name, block_type.macro_cond, [], code['parent'],
                              block_flags.else_block)
            ifdef['headcond'] = code['headcond']
            loc = self.parse_line(loc, ifdef, code['headcond']['start'])
            endblock = True

        elif cur.find('endif') == 0 and code['parent']:
            # Insert an empty else block if there isn't one.
            if code['flags'] != block_flags.else_block:
                name = self.normalize_condition('!(' + code['name'] + ')')
                ifdef = new_block(name, block_type.macro_cond, [], code['parent'],
                                  block_flags.else_block)
                ifdef['headcond'] = code['headcond']
                loc = self.parse_line(loc - 1, ifdef, code['headcond']['start'])
            endblock = True

        return (loc, endblock)


    def parse_c_expr(self, cur, loc, code):
        ''' Parse a C expression.

        CUR is the string to be parsed, which continues to grow until a match is
        found.  OP is the string array and LOC is the first unread location in the
        string array.  CODE is the block in which any identified expressions should
        be added.
        '''
        self.debug.print('PARSING: %s' % cur)

        for p in self.c_expr_parsers:
            cur, loc = p.parse_line(cur, self.op, loc, code, self.KNOWN_MACROS)
            if not cur:
                break

        return cur, loc


    def expand_problematic_macros(self, cur):
        ''' Replace problem macros with their substitutes in CUR.
        '''
        for p in self.project_quirks.MACRO_QUIRKS:
            cur = re.sub(p['orig'], p['sub'], cur)

        return cur


    def parse_line(self, loc, code, start = ''):
        '''
        Parse the file line by line.  The function assumes a mostly GNU coding
        standard compliant input so it might barf with anything that is eligible for
        the Obfuscated C code contest.

        The basic idea of the parser is to identify macro conditional scopes and
        definitions, includes, etc. and then parse the remaining C code in the
        context of those macro scopes.  The parser does not try to understand the
        semantics of the code or even validate its syntax.  It only records high
        level symbols in the source and makes a tree structure to indicate the
        declaration/definition of those symbols and their scope in the macro
        definitions.

        OP is the string array.
        LOC is the first unparsed line.
        CODE is the block scope within which the parsing is currently going on.
        START is the string with which this parsing should start.
        '''
        cur = start
        endblock = False
        saved_cur = ''
        saved_loc = 0
        endblock_loc = loc

        while loc < len(self.op):
            nextline = self.op[loc]

            # Macros.
            if nextline[0] == '#':
                (loc, endblock) = self.parse_preprocessor(loc, code, cur)
                if endblock:
                    endblock_loc = loc
            # Rest of C Code.
            else:
                cur = cur + ' ' + nextline
                cur = self.expand_problematic_macros(cur).strip()
                cur, loc = self.parse_c_expr(cur, loc + 1, code)

            if endblock and not cur:
                # If we are returning from the first #if block, we want to proceed
                # beyond the current block, not repeat it for any preceding blocks.
                if code['headcond'] == code:
                    return loc
                else:
                    return endblock_loc

        return loc

    def drop_empty_blocks(self, tree):
        ''' Drop empty macro conditional blocks.
        '''
        newcontents = []

        for x in tree['contents']:
            if x['type'] != block_type.macro_cond or len(x['contents']) > 0:
                newcontents.append(x)

        for t in newcontents:
            if t['type'] == block_type.macro_cond:
                self.drop_empty_blocks(t)

        tree['contents'] = newcontents


    def consolidate_tree_blocks(self, tree):
        ''' Consolidate common macro conditional blocks.

        Get macro conditional blocks at the same level but scatterred across the
        file together into a single common block to allow for better comparison.
        '''
        # Nothing to do for non-nesting blocks.
        if tree['type'] != block_type.macro_cond \
                and tree['type'] != block_type.file:
            return

        # Now for nesting blocks, get the list of unique condition names and
        # consolidate code under them.  The result also bunches up all the
        # conditions at the top.
        newcontents = []

        macros = [x for x in tree['contents'] \
                  if x['type'] == block_type.macro_cond]
        macro_names = sorted(set([x['name'] for x in macros]))
        for m in macro_names:
            nc = [x['contents'] for x in tree['contents'] if x['name'] == m \
                    and x['type'] == block_type.macro_cond]
            b = new_block(m, block_type.macro_cond, sum(nc, []), tree)
            self.consolidate_tree_blocks(b)
            newcontents.append(b)

        newcontents.extend([x for x in tree['contents'] \
                            if x['type'] != block_type.macro_cond])

        tree['contents'] = newcontents


    def compact_tree(self, tree):
        ''' Try to reduce the tree to its minimal form.

        A source code tree in its simplest form may have a lot of duplicated
        information that may be difficult to compare and come up with a minimal
        difference.
        '''

        # First, drop all empty blocks.
        self.drop_empty_blocks(tree)

        # Macro conditions that nest the entire file aren't very interesting.  This
        # should take care of the header guards.
        if tree['type'] == block_type.file \
                and len(tree['contents']) == 1 \
                and tree['contents'][0]['type'] == block_type.macro_cond:
            tree['contents'] = tree['contents'][0]['contents']

        # Finally consolidate all macro conditional blocks.
        self.consolidate_tree_blocks(tree)


    def parse(self, op):
        ''' File parser.

        Parse the input array of lines OP and generate a tree structure to
        represent the file.  This tree structure is then used for comparison between
        the old and new file.
        '''
        self.KNOWN_MACROS = []
        tree = new_block('', block_type.file, [], None)
        self.op = self.remove_comments(op)
        self.remove_extern_c()
        self.op = [re.sub(r'#\s+', '#', x) for x in self.op]
        self.parse_line(0, tree)
        self.compact_tree(tree)
        self.dump_tree(tree, 0)

        return tree


    def print_change(self, tree, action, prologue = ''):
        ''' Print the nature of the differences found in the tree compared to the
        other tree.  TREE is the tree that changed, action is what the change was
        (Added, Removed, Modified) and prologue specifies the macro scope the change
        is in.  The function calls itself recursively for all macro condition tree
        nodes.
        '''

        if tree['type'] != block_type.macro_cond:
            print('\t%s(%s): %s.' % (prologue, tree['name'], action))
            return

        prologue = '%s[%s]' % (prologue, tree['name'])
        for t in tree['contents']:
            if t['type'] == block_type.macro_cond:
                self.print_change(t, action, prologue)
            else:
                print('\t%s(%s): %s.' % (prologue, t['name'], action))


    def compare_trees(self, left, right, prologue = ''):
        ''' Compare two trees and print the difference.

        This routine is the entry point to compare two trees and print out their
        differences.  LEFT and RIGHT will always have the same name and type,
        starting with block_type.file and '' at the top level.
        '''

        if left['type'] == block_type.macro_cond or left['type'] == block_type.file:

            if left['type'] == block_type.macro_cond:
                prologue = '%s[%s]' % (prologue, left['name'])

            # Make sure that everything in the left tree exists in the right tree.
            for cl in left['contents']:
                found = False
                for cr in right['contents']:
                    if not cl['matched'] and not cr['matched'] and \
                            cl['name'] == cr['name'] and cl['type'] == cr['type']:
                        cl['matched'] = cr['matched'] = True
                        self.compare_trees(cl, cr, prologue)
                        found = True
                        break
                if not found:
                    self.print_change(cl, cl['actions']['del'], prologue)

            # ... and vice versa.  This time we only need to look at unmatched
            # contents.
            for cr in right['contents']:
                if not cr['matched']:
                    self.print_change(cr, cr['actions']['new'], prologue)
        else:
            if left['contents'] != right['contents']:
                self.print_change(left, left['actions']['mod'], prologue)


    def dump_tree(self, tree, indent):
        ''' Print the entire tree.
        '''
        if not self.debug.debug:
            return

        if tree['type'] == block_type.macro_cond or tree['type'] == block_type.file:
            print('%sScope: %s' % (' ' * indent, tree['name']))
            for c in tree['contents']:
                self.dump_tree(c, indent + 4)
            print('%sEndScope: %s' % (' ' * indent, tree['name']))
        else:
            if tree['type'] == block_type.func:
                print('%sFUNC: %s' % (' ' * indent, tree['name']))
            elif tree['type'] == block_type.composite:
                print('%sCOMPOSITE: %s' % (' ' * indent, tree['name']))
            elif tree['type'] == block_type.assign:
                print('%sASSIGN: %s' % (' ' * indent, tree['name']))
            elif tree['type'] == block_type.fndecl:
                print('%sFNDECL: %s' % (' ' * indent, tree['name']))
            elif tree['type'] == block_type.decl:
                print('%sDECL: %s' % (' ' * indent, tree['name']))
            elif tree['type'] == block_type.macrocall:
                print('%sMACROCALL: %s' % (' ' * indent, tree['name']))
            elif tree['type'] == block_type.macro_def:
                print('%sDEFINE: %s' % (' ' * indent, tree['name']))
            elif tree['type'] == block_type.macro_include:
                print('%sINCLUDE: %s' % (' ' * indent, tree['name']))
            elif tree['type'] == block_type.macro_undef:
                print('%sUNDEF: %s' % (' ' * indent, tree['name']))
            else:
                print('%sMACRO LEAF: %s' % (' ' * indent, tree['name']))


    def compare(self, oldfile, newfile):
        ''' Entry point for the C backend.

        Parse the two files into trees and compare them.  Print the result of the
        comparison in the ChangeLog-like format.
        '''
        self.debug.print('LEFT TREE')
        self.debug.print('-' * 80)
        left = self.parse(oldfile)

        self.debug.print('RIGHT TREE')
        self.debug.print('-' * 80)
        right = self.parse(newfile)

        self.compare_trees(left, right)