1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
|
/* Copyright (C) 2001-2014 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@redhat.com>, 2001.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <errno.h>
#include <netdb.h>
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>
#include <gai_misc.h>
/* We need this special structure to handle asynchronous I/O. */
struct async_waitlist
{
int counter;
struct sigevent sigev;
struct waitlist list[0];
};
int
getaddrinfo_a (int mode, struct gaicb *list[], int ent, struct sigevent *sig)
{
struct sigevent defsigev;
struct requestlist *requests[ent];
int cnt;
volatile int total = 0;
int result = 0;
/* Check arguments. */
if (mode != GAI_WAIT && mode != GAI_NOWAIT)
{
__set_errno (EINVAL);
return EAI_SYSTEM;
}
if (sig == NULL)
{
defsigev.sigev_notify = SIGEV_NONE;
sig = &defsigev;
}
/* Request the mutex. */
pthread_mutex_lock (&__gai_requests_mutex);
/* Now we can enqueue all requests. Since we already acquired the
mutex the enqueue function need not do this. */
for (cnt = 0; cnt < ent; ++cnt)
if (list[cnt] != NULL)
{
requests[cnt] = __gai_enqueue_request (list[cnt]);
if (requests[cnt] != NULL)
/* Successfully enqueued. */
++total;
else
/* Signal that we've seen an error. `errno' and the error code
of the gaicb will tell more. */
result = EAI_SYSTEM;
}
else
requests[cnt] = NULL;
if (total == 0)
{
/* We don't have anything to do except signalling if we work
asynchronously. */
/* Release the mutex. We do this before raising a signal since the
signal handler might do a `siglongjmp' and then the mutex is
locked forever. */
pthread_mutex_unlock (&__gai_requests_mutex);
if (mode == GAI_NOWAIT)
__gai_notify_only (sig,
sig->sigev_notify == SIGEV_SIGNAL ? getpid () : 0);
return result;
}
else if (mode == GAI_WAIT)
{
#ifndef DONT_NEED_GAI_MISC_COND
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
#endif
struct waitlist waitlist[ent];
int oldstate;
total = 0;
for (cnt = 0; cnt < ent; ++cnt)
if (requests[cnt] != NULL)
{
#ifndef DONT_NEED_GAI_MISC_COND
waitlist[cnt].cond = &cond;
#endif
waitlist[cnt].next = requests[cnt]->waiting;
waitlist[cnt].counterp = &total;
waitlist[cnt].sigevp = NULL;
waitlist[cnt].caller_pid = 0; /* Not needed. */
requests[cnt]->waiting = &waitlist[cnt];
++total;
}
/* Since `pthread_cond_wait'/`pthread_cond_timedwait' are cancelation
points we must be careful. We added entries to the waiting lists
which we must remove. So defer cancelation for now. */
pthread_setcancelstate (PTHREAD_CANCEL_DISABLE, &oldstate);
while (total > 0)
{
#ifdef DONT_NEED_GAI_MISC_COND
int not_used __attribute__ ((unused));
GAI_MISC_WAIT (not_used, total, NULL, 1);
#else
pthread_cond_wait (&cond, &__gai_requests_mutex);
#endif
}
/* Now it's time to restore the cancelation state. */
pthread_setcancelstate (oldstate, NULL);
#ifndef DONT_NEED_GAI_MISC_COND
/* Release the conditional variable. */
if (pthread_cond_destroy (&cond) != 0)
/* This must never happen. */
abort ();
#endif
}
else
{
struct async_waitlist *waitlist;
waitlist = (struct async_waitlist *)
malloc (sizeof (struct async_waitlist)
+ (ent * sizeof (struct waitlist)));
if (waitlist == NULL)
result = EAI_AGAIN;
else
{
pid_t caller_pid = sig->sigev_notify == SIGEV_SIGNAL ? getpid () : 0;
total = 0;
for (cnt = 0; cnt < ent; ++cnt)
if (requests[cnt] != NULL)
{
#ifndef DONT_NEED_GAI_MISC_COND
waitlist->list[cnt].cond = NULL;
#endif
waitlist->list[cnt].next = requests[cnt]->waiting;
waitlist->list[cnt].counterp = &waitlist->counter;
waitlist->list[cnt].sigevp = &waitlist->sigev;
waitlist->list[cnt].caller_pid = caller_pid;
requests[cnt]->waiting = &waitlist->list[cnt];
++total;
}
waitlist->counter = total;
waitlist->sigev = *sig;
}
}
/* Release the mutex. */
pthread_mutex_unlock (&__gai_requests_mutex);
return result;
}
|