1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|
/* Copyright (C) 2002-2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@redhat.com>, 2002.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <assert.h>
#include <errno.h>
#include <stdlib.h>
#include "pthreadP.h"
#include <lowlevellock.h>
#include <stap-probe.h>
#ifndef lll_unlock_elision
#define lll_unlock_elision(a,b,c) ({ lll_unlock (a,c); 0; })
#endif
static int
__pthread_mutex_unlock_full (pthread_mutex_t *mutex, int decr)
__attribute_noinline__;
int
attribute_hidden
__pthread_mutex_unlock_usercnt (pthread_mutex_t *mutex, int decr)
{
/* See concurrency notes regarding mutex type which is loaded from __kind
in struct __pthread_mutex_s in sysdeps/nptl/bits/thread-shared-types.h. */
int type = PTHREAD_MUTEX_TYPE_ELISION (mutex);
if (__builtin_expect (type &
~(PTHREAD_MUTEX_KIND_MASK_NP|PTHREAD_MUTEX_ELISION_FLAGS_NP), 0))
return __pthread_mutex_unlock_full (mutex, decr);
if (__builtin_expect (type, PTHREAD_MUTEX_TIMED_NP)
== PTHREAD_MUTEX_TIMED_NP)
{
/* Always reset the owner field. */
normal:
mutex->__data.__owner = 0;
if (decr)
/* One less user. */
--mutex->__data.__nusers;
/* Unlock. */
lll_unlock (mutex->__data.__lock, PTHREAD_MUTEX_PSHARED (mutex));
LIBC_PROBE (mutex_release, 1, mutex);
return 0;
}
else if (__glibc_likely (type == PTHREAD_MUTEX_TIMED_ELISION_NP))
{
/* Don't reset the owner/users fields for elision. */
return lll_unlock_elision (mutex->__data.__lock, mutex->__data.__elision,
PTHREAD_MUTEX_PSHARED (mutex));
}
else if (__builtin_expect (PTHREAD_MUTEX_TYPE (mutex)
== PTHREAD_MUTEX_RECURSIVE_NP, 1))
{
/* Recursive mutex. */
if (mutex->__data.__owner != THREAD_GETMEM (THREAD_SELF, tid))
return EPERM;
if (--mutex->__data.__count != 0)
/* We still hold the mutex. */
return 0;
goto normal;
}
else if (__builtin_expect (PTHREAD_MUTEX_TYPE (mutex)
== PTHREAD_MUTEX_ADAPTIVE_NP, 1))
goto normal;
else
{
/* Error checking mutex. */
assert (type == PTHREAD_MUTEX_ERRORCHECK_NP);
if (mutex->__data.__owner != THREAD_GETMEM (THREAD_SELF, tid)
|| ! lll_islocked (mutex->__data.__lock))
return EPERM;
goto normal;
}
}
static int
__pthread_mutex_unlock_full (pthread_mutex_t *mutex, int decr)
{
int newowner = 0;
int private;
switch (PTHREAD_MUTEX_TYPE (mutex))
{
case PTHREAD_MUTEX_ROBUST_RECURSIVE_NP:
/* Recursive mutex. */
if ((mutex->__data.__lock & FUTEX_TID_MASK)
== THREAD_GETMEM (THREAD_SELF, tid)
&& __builtin_expect (mutex->__data.__owner
== PTHREAD_MUTEX_INCONSISTENT, 0))
{
if (--mutex->__data.__count != 0)
/* We still hold the mutex. */
return ENOTRECOVERABLE;
goto notrecoverable;
}
if (mutex->__data.__owner != THREAD_GETMEM (THREAD_SELF, tid))
return EPERM;
if (--mutex->__data.__count != 0)
/* We still hold the mutex. */
return 0;
goto robust;
case PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP:
case PTHREAD_MUTEX_ROBUST_NORMAL_NP:
case PTHREAD_MUTEX_ROBUST_ADAPTIVE_NP:
if ((mutex->__data.__lock & FUTEX_TID_MASK)
!= THREAD_GETMEM (THREAD_SELF, tid)
|| ! lll_islocked (mutex->__data.__lock))
return EPERM;
/* If the previous owner died and the caller did not succeed in
making the state consistent, mark the mutex as unrecoverable
and make all waiters. */
if (__builtin_expect (mutex->__data.__owner
== PTHREAD_MUTEX_INCONSISTENT, 0))
notrecoverable:
newowner = PTHREAD_MUTEX_NOTRECOVERABLE;
robust:
/* Remove mutex from the list. */
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
&mutex->__data.__list.__next);
/* We must set op_pending before we dequeue the mutex. Also see
comments at ENQUEUE_MUTEX. */
__asm ("" ::: "memory");
DEQUEUE_MUTEX (mutex);
mutex->__data.__owner = newowner;
if (decr)
/* One less user. */
--mutex->__data.__nusers;
/* Unlock by setting the lock to 0 (not acquired); if the lock had
FUTEX_WAITERS set previously, then wake any waiters.
The unlock operation must be the last access to the mutex to not
violate the mutex destruction requirements (see __lll_unlock). */
private = PTHREAD_ROBUST_MUTEX_PSHARED (mutex);
if (__glibc_unlikely ((atomic_exchange_rel (&mutex->__data.__lock, 0)
& FUTEX_WAITERS) != 0))
lll_futex_wake (&mutex->__data.__lock, 1, private);
/* We must clear op_pending after we release the mutex.
FIXME However, this violates the mutex destruction requirements
because another thread could acquire the mutex, destroy it, and
reuse the memory for something else; then, if this thread crashes,
and the memory happens to have a value equal to the TID, the kernel
will believe it is still related to the mutex (which has been
destroyed already) and will modify some other random object. */
__asm ("" ::: "memory");
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
break;
/* The PI support requires the Linux futex system call. If that's not
available, pthread_mutex_init should never have allowed the type to
be set. So it will get the default case for an invalid type. */
#ifdef __NR_futex
case PTHREAD_MUTEX_PI_RECURSIVE_NP:
/* Recursive mutex. */
if (mutex->__data.__owner != THREAD_GETMEM (THREAD_SELF, tid))
return EPERM;
if (--mutex->__data.__count != 0)
/* We still hold the mutex. */
return 0;
goto continue_pi_non_robust;
case PTHREAD_MUTEX_PI_ROBUST_RECURSIVE_NP:
/* Recursive mutex. */
if ((mutex->__data.__lock & FUTEX_TID_MASK)
== THREAD_GETMEM (THREAD_SELF, tid)
&& __builtin_expect (mutex->__data.__owner
== PTHREAD_MUTEX_INCONSISTENT, 0))
{
if (--mutex->__data.__count != 0)
/* We still hold the mutex. */
return ENOTRECOVERABLE;
goto pi_notrecoverable;
}
if (mutex->__data.__owner != THREAD_GETMEM (THREAD_SELF, tid))
return EPERM;
if (--mutex->__data.__count != 0)
/* We still hold the mutex. */
return 0;
goto continue_pi_robust;
case PTHREAD_MUTEX_PI_ERRORCHECK_NP:
case PTHREAD_MUTEX_PI_NORMAL_NP:
case PTHREAD_MUTEX_PI_ADAPTIVE_NP:
case PTHREAD_MUTEX_PI_ROBUST_ERRORCHECK_NP:
case PTHREAD_MUTEX_PI_ROBUST_NORMAL_NP:
case PTHREAD_MUTEX_PI_ROBUST_ADAPTIVE_NP:
if ((mutex->__data.__lock & FUTEX_TID_MASK)
!= THREAD_GETMEM (THREAD_SELF, tid)
|| ! lll_islocked (mutex->__data.__lock))
return EPERM;
/* If the previous owner died and the caller did not succeed in
making the state consistent, mark the mutex as unrecoverable
and make all waiters. */
/* See concurrency notes regarding __kind in struct __pthread_mutex_s
in sysdeps/nptl/bits/thread-shared-types.h. */
if ((atomic_load_relaxed (&(mutex->__data.__kind))
& PTHREAD_MUTEX_ROBUST_NORMAL_NP) != 0
&& __builtin_expect (mutex->__data.__owner
== PTHREAD_MUTEX_INCONSISTENT, 0))
pi_notrecoverable:
newowner = PTHREAD_MUTEX_NOTRECOVERABLE;
/* See concurrency notes regarding __kind in struct __pthread_mutex_s
in sysdeps/nptl/bits/thread-shared-types.h. */
if ((atomic_load_relaxed (&(mutex->__data.__kind))
& PTHREAD_MUTEX_ROBUST_NORMAL_NP) != 0)
{
continue_pi_robust:
/* Remove mutex from the list.
Note: robust PI futexes are signaled by setting bit 0. */
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending,
(void *) (((uintptr_t) &mutex->__data.__list.__next)
| 1));
/* We must set op_pending before we dequeue the mutex. Also see
comments at ENQUEUE_MUTEX. */
__asm ("" ::: "memory");
DEQUEUE_MUTEX (mutex);
}
continue_pi_non_robust:
mutex->__data.__owner = newowner;
if (decr)
/* One less user. */
--mutex->__data.__nusers;
/* Unlock. Load all necessary mutex data before releasing the mutex
to not violate the mutex destruction requirements (see
lll_unlock). */
/* See concurrency notes regarding __kind in struct __pthread_mutex_s
in sysdeps/nptl/bits/thread-shared-types.h. */
int robust = atomic_load_relaxed (&(mutex->__data.__kind))
& PTHREAD_MUTEX_ROBUST_NORMAL_NP;
private = (robust
? PTHREAD_ROBUST_MUTEX_PSHARED (mutex)
: PTHREAD_MUTEX_PSHARED (mutex));
/* Unlock the mutex using a CAS unless there are futex waiters or our
TID is not the value of __lock anymore, in which case we let the
kernel take care of the situation. Use release MO in the CAS to
synchronize with acquire MO in lock acquisitions. */
int l = atomic_load_relaxed (&mutex->__data.__lock);
do
{
if (((l & FUTEX_WAITERS) != 0)
|| (l != THREAD_GETMEM (THREAD_SELF, tid)))
{
INTERNAL_SYSCALL_DECL (__err);
INTERNAL_SYSCALL (futex, __err, 2, &mutex->__data.__lock,
__lll_private_flag (FUTEX_UNLOCK_PI, private));
break;
}
}
while (!atomic_compare_exchange_weak_release (&mutex->__data.__lock,
&l, 0));
/* This happens after the kernel releases the mutex but violates the
mutex destruction requirements; see comments in the code handling
PTHREAD_MUTEX_ROBUST_NORMAL_NP. */
THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL);
break;
#endif /* __NR_futex. */
case PTHREAD_MUTEX_PP_RECURSIVE_NP:
/* Recursive mutex. */
if (mutex->__data.__owner != THREAD_GETMEM (THREAD_SELF, tid))
return EPERM;
if (--mutex->__data.__count != 0)
/* We still hold the mutex. */
return 0;
goto pp;
case PTHREAD_MUTEX_PP_ERRORCHECK_NP:
/* Error checking mutex. */
if (mutex->__data.__owner != THREAD_GETMEM (THREAD_SELF, tid)
|| (mutex->__data.__lock & ~ PTHREAD_MUTEX_PRIO_CEILING_MASK) == 0)
return EPERM;
/* FALLTHROUGH */
case PTHREAD_MUTEX_PP_NORMAL_NP:
case PTHREAD_MUTEX_PP_ADAPTIVE_NP:
/* Always reset the owner field. */
pp:
mutex->__data.__owner = 0;
if (decr)
/* One less user. */
--mutex->__data.__nusers;
/* Unlock. Use release MO in the CAS to synchronize with acquire MO in
lock acquisitions. */
int newval;
int oldval = atomic_load_relaxed (&mutex->__data.__lock);
do
{
newval = oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK;
}
while (!atomic_compare_exchange_weak_release (&mutex->__data.__lock,
&oldval, newval));
if ((oldval & ~PTHREAD_MUTEX_PRIO_CEILING_MASK) > 1)
lll_futex_wake (&mutex->__data.__lock, 1,
PTHREAD_MUTEX_PSHARED (mutex));
int oldprio = newval >> PTHREAD_MUTEX_PRIO_CEILING_SHIFT;
LIBC_PROBE (mutex_release, 1, mutex);
return __pthread_tpp_change_priority (oldprio, -1);
default:
/* Correct code cannot set any other type. */
return EINVAL;
}
LIBC_PROBE (mutex_release, 1, mutex);
return 0;
}
int
__pthread_mutex_unlock (pthread_mutex_t *mutex)
{
return __pthread_mutex_unlock_usercnt (mutex, 1);
}
weak_alias (__pthread_mutex_unlock, pthread_mutex_unlock)
hidden_def (__pthread_mutex_unlock)
|