summary refs log tree commit diff
path: root/nptl/allocatestack.c
blob: 4ec3f4404714ceacf99e8ba4514ea99021d9201b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
/* Copyright (C) 2002, 2003 Free Software Foundation, Inc.
   This file is part of the GNU C Library.
   Contributed by Ulrich Drepper <drepper@redhat.com>, 2002.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, write to the Free
   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
   02111-1307 USA.  */

#include <assert.h>
#include <errno.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/param.h>
#include <dl-sysdep.h>
#include <tls.h>




/* Most architectures have exactly one stack pointer.  Some have more.  */
#define STACK_VARIABLES void *stackaddr

/* How to pass the values to the 'create_thread' function.  */
#define STACK_VARIABLES_ARGS stackaddr

/* How to declare function which gets there parameters.  */
#define STACK_VARIABLES_PARMS void *stackaddr


/* Default alignment of stack.  */
#ifndef STACK_ALIGN
# define STACK_ALIGN __alignof__ (long double)
#endif

/* Default value for minimal stack size after allocating thread
   descriptor and guard.  */
#ifndef MINIMAL_REST_STACK
# define MINIMAL_REST_STACK	4096
#endif




/* Cache handling for not-yet free stacks.  */

/* Maximum size in kB of cache.  */
static size_t stack_cache_maxsize = 40 * 1024 * 1024; /* 40MiBi by default.  */
static size_t stack_cache_actsize;

/* Mutex protecting this variable.  */
static lll_lock_t stack_cache_lock = LLL_LOCK_INITIALIZER;

/* List of queued stack frames.  */
static LIST_HEAD (stack_cache);

/* List of the stacks in use.  */
static LIST_HEAD (stack_used);

/* List of the threads with user provided stacks in use.  No need to
   initialize this, since it's done in __pthread_initialize_minimal.  */
list_t __stack_user __attribute__ ((nocommon));
hidden_def (__stack_user)

/* Number of threads running.  */
static unsigned int nptl_nthreads = 1;

/* Number of threads created.  */
static unsigned int nptl_ncreated;


/* Check whether the stack is still used or not.  */
#define FREE_P(descr) ((descr)->tid == 0)


/* We create a double linked list of all cache entries.  Double linked
   because this allows removing entries from the end.  */


/* Get a stack frame from the cache.  We have to match by size since
   some blocks might be too small or far too large.  */
static struct pthread *
get_cached_stack (size_t *sizep, void **memp)
{
  size_t size = *sizep;
  struct pthread *result = NULL;
  list_t *entry;

  lll_lock (stack_cache_lock);

  /* Search the cache for a matching entry.  We search for the
     smallest stack which has at least the required size.  Note that
     in normal situations the size of all allocated stacks is the
     same.  As the very least there are only a few different sizes.
     Therefore this loop will exit early most of the time with an
     exact match.  */
  list_for_each (entry, &stack_cache)
    {
      struct pthread *curr;

      curr = list_entry (entry, struct pthread, header.data.list);
      if (FREE_P (curr) && curr->stackblock_size >= size)
	{
	  if (curr->stackblock_size == size)
	    {
	      result = curr;
	      break;
	    }

	  if (result == NULL
	      || result->stackblock_size > curr->stackblock_size)
	    result = curr;
	}
    }

  if (__builtin_expect (result == NULL, 0)
      /* Make sure the size difference is not too excessive.  In that
	 case we do not use the block.  */
      || __builtin_expect (result->stackblock_size > 4 * size, 0))
    {
      /* Release the lock.  */
      lll_unlock (stack_cache_lock);

      return NULL;
    }

  /* Dequeue the entry.  */
  list_del (&result->header.data.list);

  /* And add to the list of stacks in use.  */
  list_add (&result->header.data.list, &stack_used);

  /* One more thread.  */
  ++nptl_nthreads;

  /* And decrease the cache size.  */
  stack_cache_actsize -= result->stackblock_size;

  /* Release the lock early.  */
  lll_unlock (stack_cache_lock);


  *sizep = result->stackblock_size;
  *memp = result->stackblock;

  /* Cancellation handling is back to the default.  */
  result->cancelhandling = 0;
  result->cleanup = NULL;

  /* No pending event.  */
  result->nextevent = NULL;

  /* Clear the DTV.  */
  dtv_t *dtv = GET_DTV (result);
  memset (dtv, '\0', (dtv[-1].counter + 1) * sizeof (dtv_t));

  /* Re-initialize the TLS.  */
  return _dl_allocate_tls_init (result);
}


/* Add a stack frame which is not used anymore to the stack.  Must be
   called with the cache lock held.  */
static inline void
queue_stack (struct pthread *stack)
{
  /* We unconditionally add the stack to the list.  The memory may
     still be in use but it will not be reused until the kernel marks
     the stack as not used anymore.  */
  list_add (&stack->header.data.list, &stack_cache);

  stack_cache_actsize += stack->stackblock_size;
  if (__builtin_expect (stack_cache_actsize > stack_cache_maxsize, 0))
    {
      /* We reduce the size of the cache.  Remove the last entries
	 until the size is below the limit.  */
      list_t *entry;
      list_t *prev;

      /* Search from the end of the list.  */
      list_for_each_prev_safe (entry, prev, &stack_cache)
	{
	  struct pthread *curr;

	  curr = list_entry(entry, struct pthread, header.data.list);
	  if (FREE_P (curr))
	    {
	      /* Unlink the block.  */
	      list_del (entry);

	      /* Account for the freed memory.  */
	      stack_cache_actsize -= curr->stackblock_size;

	      /* Free the memory associated with the ELF TLS.  */
	      _dl_deallocate_tls (curr, false);

	      /* Remove this block.  This should never fail.  If it
		 does something is really wrong.  */
	      if (munmap (curr->stackblock, curr->stackblock_size) != 0)
		abort ();

	      /* Maybe we have freed enough.  */
	      if (stack_cache_actsize <= stack_cache_maxsize)
		break;
	    }
	}
    }
}



static int
allocate_stack (const struct pthread_attr *attr, struct pthread **pdp,
		void **stack)
{
  struct pthread *pd;
  size_t size;
  size_t pagesize_m1 = __sysconf (_SC_PAGESIZE) - 1;

  assert (attr != NULL);
  assert (powerof2 (pagesize_m1 + 1));
  assert (TCB_ALIGNMENT >= STACK_ALIGN);

  /* Get the stack size from the attribute if it is set.  Otherwise we
     use the default we determined at start time.  */
  size = attr->stacksize ?: __default_stacksize;

  /* Get memory for the stack.  */
  if (__builtin_expect (attr->flags & ATTR_FLAG_STACKADDR, 0))
    {
      uintptr_t adj;

      /* If the user also specified the size of the stack make sure it
	 is large enough.  */
      if (attr->stacksize != 0
	  && attr->stacksize < (__static_tls_size + MINIMAL_REST_STACK))
	return EINVAL;

      /* Adjust stack size for alignment of the TLS block.  */
      adj = ((uintptr_t) attr->stackaddr) & (__static_tls_align - 1);
      assert (size > adj);

      /* The user provided some memory.  Let's hope it matches the
	 size...  We do not allocate guard pages if the user provided
	 the stack.  It is the user's responsibility to do this if it
	 is wanted.  */
      pd = (struct pthread *) (((uintptr_t) attr->stackaddr - adj)
			       & ~(__alignof (struct pthread) - 1)) - 1;

      /* The user provided stack memory needs to be cleared.  */
      memset (pd, '\0', sizeof (struct pthread));

      /* The first TSD block is included in the TCB.  */
      pd->specific[0] = pd->specific_1stblock;

#if LLL_LOCK_INITIALIZER != 0
      /* Initialize the lock.  */
      pd->lock = LLL_LOCK_INITIALIZER;
#endif

      /* Remember the stack-related values.  */
      pd->stackblock = (char *) attr->stackaddr - size;
      pd->stackblock_size = size - adj;

      /* This is a user-provided stack.  It will not be queued in the
	 stack cache nor will the memory (except the TLS memory) be freed.  */
      pd->user_stack = true;

      /* This is at least the second thread.  */
      pd->header.data.multiple_threads = 1;

#ifdef NEED_DL_SYSINFO
      /* Copy the sysinfo value from the parent.  */
      pd->header.data.sysinfo
	= THREAD_GETMEM (THREAD_SELF, header.data.sysinfo);
#endif

      /* Allocate the DTV for this thread.  */
      if (_dl_allocate_tls (pd) == NULL)
	/* Something went wrong.  */
	return errno;


      /* Prepare to modify global data.  */
      lll_lock (stack_cache_lock);

      /* And add to the list of stacks in use.  */
      list_add (&pd->header.data.list, &__stack_user);

      /* One more thread.  */
      ++nptl_nthreads;

      lll_unlock (stack_cache_lock);
    }
  else
    {
      /* Allocate some anonymous memory.  If possible use the
	 cache.  */
      size_t guardsize;
      size_t reqsize;
      void *mem;

#if COLORING_INCREMENT != 0
      /* Add one more page for stack coloring.  Don't to it for stacks
	 with 16 times pagesize or larger.  This might just cause
	 unnecessary misalignment.  */
      if (size <= 16 * pagesize_m1)
	size += pagesize_m1 + 1;
#endif

      /* Adjust the stack size for alignment.  */
      size &= ~(__static_tls_align - 1);
      assert (size != 0);

      /* Make sure the size of the stack is enough for the guard and
	 eventually the thread descriptor.  */
      guardsize = (attr->guardsize + pagesize_m1) & ~pagesize_m1;
      if (__builtin_expect (size < (guardsize + __static_tls_size
				    + MINIMAL_REST_STACK + pagesize_m1 + 1),
			    0))
	/* The stack is too small (or the guard too large).  */
	return EINVAL;

      /* Try to get a stack from the cache.  */
      reqsize = size;
      pd = get_cached_stack (&size, &mem);
      if (pd == NULL)
	{
	  mem = mmap (NULL, size, PROT_READ | PROT_WRITE | PROT_EXEC,
		      MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

	  if (__builtin_expect (mem == MAP_FAILED, 0))
	    return errno;

	  /* 'size' is guaranteed to be greater than zero.  So we can
	     never get a NULL pointer back from MMAP.  */
	  assert (mem != NULL);

#if COLORING_INCREMENT != 0
	  /* Atomically increment NCREATED.  */
	  unsigned int ncreated = atomic_exchange_and_add (&nptl_ncreated, 1);

	  /* We chose the offset for coloring by incrementing it for
	     every new thread by a fixed amount.  The offset used
	     module the page size.  Even if coloring would be better
	     relative to higher alignment values it makes no sense to
	     do it since the mmap() interface does not allow us to
	     specify any alignment for the returned memory block.  */
	  size_t coloring = (ncreated * COLORING_INCREMENT) & pagesize_m1;

	  /* Make sure the coloring offsets does not disturb the alignment
	     of the TCB and static TLS block.  */
	  if (__builtin_expect ((coloring & (__static_tls_align - 1)) != 0, 0))
	    coloring = (((coloring + __static_tls_align - 1)
			 & ~(__static_tls_align - 1))
			& ~pagesize_m1);
#else
	  /* Unless specified we do not make any adjustments.  */
# define coloring 0
#endif

	  /* Place the thread descriptor at the end of the stack.  */
	  pd = (struct pthread *) ((char *) mem + size - coloring) - 1;

	  /* Remember the stack-related values.  */
	  pd->stackblock = mem;
	  pd->stackblock_size = size;

	  /* We allocated the first block thread-specific data array.
	     This address will not change for the lifetime of this
	     descriptor.  */
	  pd->specific[0] = pd->specific_1stblock;

#if LLL_LOCK_INITIALIZER != 0
	  /* Initialize the lock.  */
	  pd->lock = LLL_LOCK_INITIALIZER;
#endif

	  /* This is at least the second thread.  */
	  pd->header.data.multiple_threads = 1;

#ifdef NEED_DL_SYSINFO
	  /* Copy the sysinfo value from the parent.  */
	  pd->header.data.sysinfo
	    = THREAD_GETMEM (THREAD_SELF, header.data.sysinfo);
#endif

	  /* Allocate the DTV for this thread.  */
	  if (_dl_allocate_tls (pd) == NULL)
	    {
	      /* Something went wrong.  */
	      int err = errno;

	      /* Free the stack memory we just allocated.  */
	      (void) munmap (mem, size);

	      return err;
	    }


	  /* Prepare to modify global data.  */
	  lll_lock (stack_cache_lock);

	  /* And add to the list of stacks in use.  */
	  list_add (&pd->header.data.list, &stack_used);

	  /* One more thread.  */
	  ++nptl_nthreads;

	  lll_unlock (stack_cache_lock);


	  /* Note that all of the stack and the thread descriptor is
	     zeroed.  This means we do not have to initialize fields
	     with initial value zero.  This is specifically true for
	     the 'tid' field which is always set back to zero once the
	     stack is not used anymore and for the 'guardsize' field
	     which will be read next.  */
	}

      /* Create or resize the guard area if necessary.  */
      if (__builtin_expect (guardsize > pd->guardsize, 0))
	{
	  if (mprotect (mem, guardsize, PROT_NONE) != 0)
	    {
	      int err;
	    mprot_error:
	      err = errno;

	      lll_lock (stack_cache_lock);

	      /* Remove the thread from the list.  */
	      list_del (&pd->header.data.list);

	      /* The thread is gone.  */
	      --nptl_nthreads;

	      lll_unlock (stack_cache_lock);

	      /* Free the memory regardless of whether the size of the
		 cache is over the limit or not.  If this piece of
		 memory caused problems we better do not use it
		 anymore.  Uh, and we ignore possible errors.  There
		 is nothing we could do.  */
	      (void) munmap (mem, size);

	      return err;
	    }

	  pd->guardsize = guardsize;
	}
      else if (__builtin_expect (pd->guardsize - guardsize > size - reqsize,
				 0))
	{
	  /* The old guard area is too large.  */
	  if (mprotect ((char *) mem + guardsize,
			pd->guardsize - guardsize,
			PROT_READ | PROT_WRITE | PROT_EXEC) != 0)
	    goto mprot_error;

	  pd->guardsize = guardsize;
	}
    }

  /* We place the thread descriptor at the end of the stack.  */
  *pdp = pd;

#if TLS_TCB_AT_TP
  /* The stack begin before the TCB and the static TLS block.  */
  *stack = ((char *) (pd + 1) - __static_tls_size);
#else
# error "Implement me"
#endif

  return 0;
}

/* This is how the function is called.  We do it this way to allow
   other variants of the function to have more parameters.  */
#define ALLOCATE_STACK(attr, pd) allocate_stack (attr, pd, &stackaddr)


void
__deallocate_stack (struct pthread *pd)
{
  lll_lock (stack_cache_lock);

  /* Remove the thread from the list of threads with user defined
     stacks.  */
  list_del (&pd->header.data.list);

  /* Not much to do.  Just free the mmap()ed memory.  Note that we do
     not reset the 'used' flag in the 'tid' field.  This is done by
     the kernel.  If no thread has been created yet this field is
     still zero.  */
  if (__builtin_expect (! pd->user_stack, 1))
    (void) queue_stack (pd);
  else
    /* Free the memory associated with the ELF TLS.  */
    _dl_deallocate_tls (pd, false);

  /* One less thread.  */
  --nptl_nthreads;

  lll_unlock (stack_cache_lock);
}


/* In case of a fork() call the memory allocation in the child will be
   the same but only one thread is running.  All stacks except that of
   the one running thread are not used anymore.  We have to recycle
   them.  */
void
__reclaim_stacks (void)
{
  struct pthread *self = (struct pthread *) THREAD_SELF;

  /* No locking necessary.  The caller is the only stack in use.  */

  /* Mark all stacks except the still running one as free.  */
  list_t *runp;
  list_for_each (runp, &stack_used)
    {
      struct pthread *curp;

      curp = list_entry (runp, struct pthread, header.data.list);
      if (curp != self)
	{
	  /* This marks the stack as free.  */
	  curp->tid = 0;

	  /* Account for the size of the stack.  */
	  stack_cache_actsize += curp->stackblock_size;
	}
    }

  /* Add the stack of all running threads to the cache.  */
  list_splice (&stack_used, &stack_cache);

  /* Remove the entry for the current thread to from the cache list
     and add it to the list of running threads.  Which of the two
     lists is decided by the user_stack flag.  */
  list_del (&self->header.data.list);

  /* Re-initialize the lists for all the threads.  */
  INIT_LIST_HEAD (&stack_used);
  INIT_LIST_HEAD (&__stack_user);

  if (__builtin_expect (THREAD_GETMEM (self, user_stack), 0))
    list_add (&self->header.data.list, &__stack_user);
  else
    list_add (&self->header.data.list, &stack_used);

  /* There is one thread running.  */
  nptl_nthreads = 1;

  /* Initialize the lock.  */
  stack_cache_lock = LLL_LOCK_INITIALIZER;
}