1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
/* Complex tangent function for long double.
Copyright (C) 1997-2015 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
/* To avoid spurious underflows, use this definition to treat IBM long
double as approximating an IEEE-style format. */
#if LDBL_MANT_DIG == 106
# undef LDBL_EPSILON
# define LDBL_EPSILON 0x1p-106L
#endif
__complex__ long double
__ctanl (__complex__ long double x)
{
__complex__ long double res;
if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x)))
{
if (__isinf_nsl (__imag__ x))
{
__real__ res = __copysignl (0.0, __real__ x);
__imag__ res = __copysignl (1.0, __imag__ x);
}
else if (__real__ x == 0.0)
{
res = x;
}
else
{
__real__ res = __nanl ("");
__imag__ res = __nanl ("");
if (__isinf_nsl (__real__ x))
feraiseexcept (FE_INVALID);
}
}
else
{
long double sinrx, cosrx;
long double den;
const int t = (int) ((LDBL_MAX_EXP - 1) * M_LN2l / 2);
/* tan(x+iy) = (sin(2x) + i*sinh(2y))/(cos(2x) + cosh(2y))
= (sin(x)*cos(x) + i*sinh(y)*cosh(y)/(cos(x)^2 + sinh(y)^2). */
if (__glibc_likely (fabsl (__real__ x) > LDBL_MIN))
{
__sincosl (__real__ x, &sinrx, &cosrx);
}
else
{
sinrx = __real__ x;
cosrx = 1.0;
}
if (fabsl (__imag__ x) > t)
{
/* Avoid intermediate overflow when the real part of the
result may be subnormal. Ignoring negligible terms, the
imaginary part is +/- 1, the real part is
sin(x)*cos(x)/sinh(y)^2 = 4*sin(x)*cos(x)/exp(2y). */
long double exp_2t = __ieee754_expl (2 * t);
__imag__ res = __copysignl (1.0, __imag__ x);
__real__ res = 4 * sinrx * cosrx;
__imag__ x = fabsl (__imag__ x);
__imag__ x -= t;
__real__ res /= exp_2t;
if (__imag__ x > t)
{
/* Underflow (original imaginary part of x has absolute
value > 2t). */
__real__ res /= exp_2t;
}
else
__real__ res /= __ieee754_expl (2 * __imag__ x);
}
else
{
long double sinhix, coshix;
if (fabsl (__imag__ x) > LDBL_MIN)
{
sinhix = __ieee754_sinhl (__imag__ x);
coshix = __ieee754_coshl (__imag__ x);
}
else
{
sinhix = __imag__ x;
coshix = 1.0L;
}
if (fabsl (sinhix) > fabsl (cosrx) * LDBL_EPSILON)
den = cosrx * cosrx + sinhix * sinhix;
else
den = cosrx * cosrx;
__real__ res = sinrx * cosrx / den;
__imag__ res = sinhix * coshix / den;
}
if (fabsl (__real__ res) < LDBL_MIN)
{
long double force_underflow = __real__ res * __real__ res;
math_force_eval (force_underflow);
}
if (fabsl (__imag__ res) < LDBL_MIN)
{
long double force_underflow = __imag__ res * __imag__ res;
math_force_eval (force_underflow);
}
}
return res;
}
weak_alias (__ctanl, ctanl)
|