1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
/* Complex tangent function for float.
Copyright (C) 1997-2015 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ float
__ctanf (__complex__ float x)
{
__complex__ float res;
if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x)))
{
if (__isinf_nsf (__imag__ x))
{
if (isfinite (__real__ x) && fabsf (__real__ x) > 1.0f)
{
float sinrx, cosrx;
__sincosf (__real__ x, &sinrx, &cosrx);
__real__ res = __copysignf (0.0f, sinrx * cosrx);
}
else
__real__ res = __copysignf (0.0, __real__ x);
__imag__ res = __copysignf (1.0, __imag__ x);
}
else if (__real__ x == 0.0)
{
res = x;
}
else
{
__real__ res = __nanf ("");
__imag__ res = __nanf ("");
if (__isinf_nsf (__real__ x))
feraiseexcept (FE_INVALID);
}
}
else
{
float sinrx, cosrx;
float den;
const int t = (int) ((FLT_MAX_EXP - 1) * M_LN2 / 2);
/* tan(x+iy) = (sin(2x) + i*sinh(2y))/(cos(2x) + cosh(2y))
= (sin(x)*cos(x) + i*sinh(y)*cosh(y)/(cos(x)^2 + sinh(y)^2). */
if (__glibc_likely (fabsf (__real__ x) > FLT_MIN))
{
__sincosf (__real__ x, &sinrx, &cosrx);
}
else
{
sinrx = __real__ x;
cosrx = 1.0f;
}
if (fabsf (__imag__ x) > t)
{
/* Avoid intermediate overflow when the real part of the
result may be subnormal. Ignoring negligible terms, the
imaginary part is +/- 1, the real part is
sin(x)*cos(x)/sinh(y)^2 = 4*sin(x)*cos(x)/exp(2y). */
float exp_2t = __ieee754_expf (2 * t);
__imag__ res = __copysignf (1.0, __imag__ x);
__real__ res = 4 * sinrx * cosrx;
__imag__ x = fabsf (__imag__ x);
__imag__ x -= t;
__real__ res /= exp_2t;
if (__imag__ x > t)
{
/* Underflow (original imaginary part of x has absolute
value > 2t). */
__real__ res /= exp_2t;
}
else
__real__ res /= __ieee754_expf (2 * __imag__ x);
}
else
{
float sinhix, coshix;
if (fabsf (__imag__ x) > FLT_MIN)
{
sinhix = __ieee754_sinhf (__imag__ x);
coshix = __ieee754_coshf (__imag__ x);
}
else
{
sinhix = __imag__ x;
coshix = 1.0f;
}
if (fabsf (sinhix) > fabsf (cosrx) * FLT_EPSILON)
den = cosrx * cosrx + sinhix * sinhix;
else
den = cosrx * cosrx;
__real__ res = sinrx * cosrx / den;
__imag__ res = sinhix * coshix / den;
}
if (fabsf (__real__ res) < FLT_MIN)
{
float force_underflow = __real__ res * __real__ res;
math_force_eval (force_underflow);
}
if (fabsf (__imag__ res) < FLT_MIN)
{
float force_underflow = __imag__ res * __imag__ res;
math_force_eval (force_underflow);
}
}
return res;
}
#ifndef __ctanf
weak_alias (__ctanf, ctanf)
#endif
|