1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
/* Complex tangent function for float.
Copyright (C) 1997-2015 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ float
__ctanf (__complex__ float x)
{
__complex__ float res;
if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x)))
{
if (isinf (__imag__ x))
{
if (isfinite (__real__ x) && fabsf (__real__ x) > 1.0f)
{
float sinrx, cosrx;
__sincosf (__real__ x, &sinrx, &cosrx);
__real__ res = __copysignf (0.0f, sinrx * cosrx);
}
else
__real__ res = __copysignf (0.0, __real__ x);
__imag__ res = __copysignf (1.0, __imag__ x);
}
else if (__real__ x == 0.0)
{
res = x;
}
else
{
__real__ res = __nanf ("");
__imag__ res = __nanf ("");
if (isinf (__real__ x))
feraiseexcept (FE_INVALID);
}
}
else
{
float sinrx, cosrx;
float den;
const int t = (int) ((FLT_MAX_EXP - 1) * M_LN2 / 2);
/* tan(x+iy) = (sin(2x) + i*sinh(2y))/(cos(2x) + cosh(2y))
= (sin(x)*cos(x) + i*sinh(y)*cosh(y)/(cos(x)^2 + sinh(y)^2). */
if (__glibc_likely (fabsf (__real__ x) > FLT_MIN))
{
__sincosf (__real__ x, &sinrx, &cosrx);
}
else
{
sinrx = __real__ x;
cosrx = 1.0f;
}
if (fabsf (__imag__ x) > t)
{
/* Avoid intermediate overflow when the real part of the
result may be subnormal. Ignoring negligible terms, the
imaginary part is +/- 1, the real part is
sin(x)*cos(x)/sinh(y)^2 = 4*sin(x)*cos(x)/exp(2y). */
float exp_2t = __ieee754_expf (2 * t);
__imag__ res = __copysignf (1.0, __imag__ x);
__real__ res = 4 * sinrx * cosrx;
__imag__ x = fabsf (__imag__ x);
__imag__ x -= t;
__real__ res /= exp_2t;
if (__imag__ x > t)
{
/* Underflow (original imaginary part of x has absolute
value > 2t). */
__real__ res /= exp_2t;
}
else
__real__ res /= __ieee754_expf (2 * __imag__ x);
}
else
{
float sinhix, coshix;
if (fabsf (__imag__ x) > FLT_MIN)
{
sinhix = __ieee754_sinhf (__imag__ x);
coshix = __ieee754_coshf (__imag__ x);
}
else
{
sinhix = __imag__ x;
coshix = 1.0f;
}
if (fabsf (sinhix) > fabsf (cosrx) * FLT_EPSILON)
den = cosrx * cosrx + sinhix * sinhix;
else
den = cosrx * cosrx;
__real__ res = sinrx * cosrx / den;
__imag__ res = sinhix * coshix / den;
}
math_check_force_underflow_complex (res);
}
return res;
}
#ifndef __ctanf
weak_alias (__ctanf, ctanf)
#endif
|