1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
|
/* Compute complex base 10 logarithm.
Copyright (C) 1997-2014 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
/* log_10 (2). */
#define M_LOG10_2f 0.3010299956639811952137388947244930267682f
__complex__ float
__clog10f (__complex__ float x)
{
__complex__ float result;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
{
/* Real and imaginary part are 0.0. */
__imag__ result = signbit (__real__ x) ? M_PI : 0.0;
__imag__ result = __copysignf (__imag__ result, __imag__ x);
/* Yes, the following line raises an exception. */
__real__ result = -1.0 / fabsf (__real__ x);
}
else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN))
{
/* Neither real nor imaginary part is NaN. */
float absx = fabsf (__real__ x), absy = fabsf (__imag__ x);
int scale = 0;
if (absx < absy)
{
float t = absx;
absx = absy;
absy = t;
}
if (absx > FLT_MAX / 2.0f)
{
scale = -1;
absx = __scalbnf (absx, scale);
absy = (absy >= FLT_MIN * 2.0f ? __scalbnf (absy, scale) : 0.0f);
}
else if (absx < FLT_MIN && absy < FLT_MIN)
{
scale = FLT_MANT_DIG;
absx = __scalbnf (absx, scale);
absy = __scalbnf (absy, scale);
}
if (absx == 1.0f && scale == 0)
{
float absy2 = absy * absy;
if (absy2 <= FLT_MIN * 2.0f * (float) M_LN10)
{
#if __FLT_EVAL_METHOD__ == 0
__real__ result
= (absy2 / 2.0f - absy2 * absy2 / 4.0f) * (float) M_LOG10E;
#else
volatile float force_underflow = absy2 * absy2 / 4.0f;
__real__ result
= (absy2 / 2.0f - force_underflow) * (float) M_LOG10E;
#endif
}
else
__real__ result = __log1pf (absy2) * ((float) M_LOG10E / 2.0f);
}
else if (absx > 1.0f && absx < 2.0f && absy < 1.0f && scale == 0)
{
float d2m1 = (absx - 1.0f) * (absx + 1.0f);
if (absy >= FLT_EPSILON)
d2m1 += absy * absy;
__real__ result = __log1pf (d2m1) * ((float) M_LOG10E / 2.0f);
}
else if (absx < 1.0f
&& absx >= 0.75f
&& absy < FLT_EPSILON / 2.0f
&& scale == 0)
{
float d2m1 = (absx - 1.0f) * (absx + 1.0f);
__real__ result = __log1pf (d2m1) * ((float) M_LOG10E / 2.0f);
}
else if (absx < 1.0f && (absx >= 0.75f || absy >= 0.5f) && scale == 0)
{
float d2m1 = __x2y2m1f (absx, absy);
__real__ result = __log1pf (d2m1) * ((float) M_LOG10E / 2.0f);
}
else
{
float d = __ieee754_hypotf (absx, absy);
__real__ result = __ieee754_log10f (d) - scale * M_LOG10_2f;
}
__imag__ result = M_LOG10E * __ieee754_atan2f (__imag__ x, __real__ x);
}
else
{
__imag__ result = __nanf ("");
if (rcls == FP_INFINITE || icls == FP_INFINITE)
/* Real or imaginary part is infinite. */
__real__ result = HUGE_VALF;
else
__real__ result = __nanf ("");
}
return result;
}
#ifndef __clog10f
weak_alias (__clog10f, clog10f)
#endif
|