1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
/* Return value of complex exponential function for a float type.
Copyright (C) 1997-2017 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
CFLOAT
M_DECL_FUNC (__cexp) (CFLOAT x)
{
CFLOAT retval;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_likely (rcls >= FP_ZERO))
{
/* Real part is finite. */
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
const int t = (int) ((M_MAX_EXP - 1) * M_MLIT (M_LN2));
FLOAT sinix, cosix;
if (__glibc_likely (M_FABS (__imag__ x) > M_MIN))
{
M_SINCOS (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1;
}
if (__real__ x > t)
{
FLOAT exp_t = M_EXP (t);
__real__ x -= t;
sinix *= exp_t;
cosix *= exp_t;
if (__real__ x > t)
{
__real__ x -= t;
sinix *= exp_t;
cosix *= exp_t;
}
}
if (__real__ x > t)
{
/* Overflow (original real part of x > 3t). */
__real__ retval = M_MAX * cosix;
__imag__ retval = M_MAX * sinix;
}
else
{
FLOAT exp_val = M_EXP (__real__ x);
__real__ retval = exp_val * cosix;
__imag__ retval = exp_val * sinix;
}
math_check_force_underflow_complex (retval);
}
else
{
/* If the imaginary part is +-inf or NaN and the real part
is not +-inf the result is NaN + iNaN. */
__real__ retval = M_NAN;
__imag__ retval = M_NAN;
feraiseexcept (FE_INVALID);
}
}
else if (__glibc_likely (rcls == FP_INFINITE))
{
/* Real part is infinite. */
if (__glibc_likely (icls >= FP_ZERO))
{
/* Imaginary part is finite. */
FLOAT value = signbit (__real__ x) ? 0 : M_HUGE_VAL;
if (icls == FP_ZERO)
{
/* Imaginary part is 0.0. */
__real__ retval = value;
__imag__ retval = __imag__ x;
}
else
{
FLOAT sinix, cosix;
if (__glibc_likely (M_FABS (__imag__ x) > M_MIN))
{
M_SINCOS (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1;
}
__real__ retval = M_COPYSIGN (value, cosix);
__imag__ retval = M_COPYSIGN (value, sinix);
}
}
else if (signbit (__real__ x) == 0)
{
__real__ retval = M_HUGE_VAL;
__imag__ retval = __imag__ x - __imag__ x;
}
else
{
__real__ retval = 0;
__imag__ retval = M_COPYSIGN (0, __imag__ x);
}
}
else
{
/* If the real part is NaN the result is NaN + iNaN unless the
imaginary part is zero. */
__real__ retval = M_NAN;
if (icls == FP_ZERO)
__imag__ retval = __imag__ x;
else
{
__imag__ retval = M_NAN;
if (rcls != FP_NAN || icls != FP_NAN)
feraiseexcept (FE_INVALID);
}
}
return retval;
}
declare_mgen_alias (__cexp, cexp)
#if M_LIBM_NEED_COMPAT (cexp)
declare_mgen_libm_compat (__cexp, cexp)
#endif
|