about summary refs log tree commit diff
path: root/math/s_catanl.c
blob: 4425002599e534cb1c8bff72197ba08cc0459894 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
/* Return arc tangent of complex long double value.
   Copyright (C) 1997-2016 Free Software Foundation, Inc.
   This file is part of the GNU C Library.
   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <http://www.gnu.org/licenses/>.  */

#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>

/* To avoid spurious overflows, use this definition to treat IBM long
   double as approximating an IEEE-style format.  */
#if LDBL_MANT_DIG == 106
# undef LDBL_EPSILON
# define LDBL_EPSILON 0x1p-106L
#endif

__complex__ long double
__catanl (__complex__ long double x)
{
  __complex__ long double res;
  int rcls = fpclassify (__real__ x);
  int icls = fpclassify (__imag__ x);

  if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE))
    {
      if (rcls == FP_INFINITE)
	{
	  __real__ res = __copysignl (M_PI_2l, __real__ x);
	  __imag__ res = __copysignl (0.0, __imag__ x);
	}
      else if (icls == FP_INFINITE)
	{
	  if (rcls >= FP_ZERO)
	    __real__ res = __copysignl (M_PI_2l, __real__ x);
	  else
	    __real__ res = __nanl ("");
	  __imag__ res = __copysignl (0.0, __imag__ x);
	}
      else if (icls == FP_ZERO || icls == FP_INFINITE)
	{
	  __real__ res = __nanl ("");
	  __imag__ res = __copysignl (0.0, __imag__ x);
	}
      else
	{
	  __real__ res = __nanl ("");
	  __imag__ res = __nanl ("");
	}
    }
  else if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
    {
      res = x;
    }
  else
    {
      if (fabsl (__real__ x) >= 16.0L / LDBL_EPSILON
	  || fabsl (__imag__ x) >= 16.0L / LDBL_EPSILON)
	{
	  __real__ res = __copysignl (M_PI_2l, __real__ x);
	  if (fabsl (__real__ x) <= 1.0L)
	    __imag__ res = 1.0L / __imag__ x;
	  else if (fabsl (__imag__ x) <= 1.0L)
	    __imag__ res = __imag__ x / __real__ x / __real__ x;
	  else
	    {
	      long double h = __ieee754_hypotl (__real__ x / 2.0L,
						__imag__ x / 2.0L);
	      __imag__ res = __imag__ x / h / h / 4.0L;
	    }
	}
      else
	{
	  long double den, absx, absy;

	  absx = fabsl (__real__ x);
	  absy = fabsl (__imag__ x);
	  if (absx < absy)
	    {
	      long double t = absx;
	      absx = absy;
	      absy = t;
	    }

	  if (absy < LDBL_EPSILON / 2.0L)
	    {
	      den = (1.0L - absx) * (1.0L + absx);
	      if (den == -0.0L)
		den = 0.0L;
	    }
	  else if (absx >= 1.0L)
	    den = (1.0L - absx) * (1.0L + absx) - absy * absy;
	  else if (absx >= 0.75L || absy >= 0.5L)
	    den = -__x2y2m1l (absx, absy);
	  else
	    den = (1.0L - absx) * (1.0L + absx) - absy * absy;

	  __real__ res = 0.5L * __ieee754_atan2l (2.0L * __real__ x, den);

	  if (fabsl (__imag__ x) == 1.0L
	      && fabsl (__real__ x) < LDBL_EPSILON * LDBL_EPSILON)
	    __imag__ res = (__copysignl (0.5L, __imag__ x)
			    * (M_LN2l - __ieee754_logl (fabsl (__real__ x))));
	  else
	    {
	      long double r2 = 0.0L, num, f;

	      if (fabsl (__real__ x) >= LDBL_EPSILON * LDBL_EPSILON)
		r2 = __real__ x * __real__ x;

	      num = __imag__ x + 1.0L;
	      num = r2 + num * num;

	      den = __imag__ x - 1.0L;
	      den = r2 + den * den;

	      f = num / den;
	      if (f < 0.5L)
		__imag__ res = 0.25L * __ieee754_logl (f);
	      else
		{
		  num = 4.0L * __imag__ x;
		  __imag__ res = 0.25L * __log1pl (num / den);
		}
	    }
	}

      math_check_force_underflow_complex (res);
    }

  return res;
}
weak_alias (__catanl, catanl)