about summary refs log tree commit diff
path: root/math/s_catanl.c
blob: 17ab62d34045ee165408d8648a96000f38b8c882 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
/* Return arc tangent of complex long double value.
   Copyright (C) 1997-2013 Free Software Foundation, Inc.
   This file is part of the GNU C Library.
   Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <http://www.gnu.org/licenses/>.  */

#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>

/* To avoid spurious overflows, use this definition to treat IBM long
   double as approximating an IEEE-style format.  */
#if LDBL_MANT_DIG == 106
# undef LDBL_EPSILON
# define LDBL_EPSILON 0x1p-106L
#endif

__complex__ long double
__catanl (__complex__ long double x)
{
  __complex__ long double res;
  int rcls = fpclassify (__real__ x);
  int icls = fpclassify (__imag__ x);

  if (__builtin_expect (rcls <= FP_INFINITE || icls <= FP_INFINITE, 0))
    {
      if (rcls == FP_INFINITE)
	{
	  __real__ res = __copysignl (M_PI_2l, __real__ x);
	  __imag__ res = __copysignl (0.0, __imag__ x);
	}
      else if (icls == FP_INFINITE)
	{
	  if (rcls >= FP_ZERO)
	    __real__ res = __copysignl (M_PI_2l, __real__ x);
	  else
	    __real__ res = __nanl ("");
	  __imag__ res = __copysignl (0.0, __imag__ x);
	}
      else if (icls == FP_ZERO || icls == FP_INFINITE)
	{
	  __real__ res = __nanl ("");
	  __imag__ res = __copysignl (0.0, __imag__ x);
	}
      else
	{
	  __real__ res = __nanl ("");
	  __imag__ res = __nanl ("");
	}
    }
  else if (__builtin_expect (rcls == FP_ZERO && icls == FP_ZERO, 0))
    {
      res = x;
    }
  else
    {
      if (fabsl (__real__ x) >= 16.0L / LDBL_EPSILON
	  || fabsl (__imag__ x) >= 16.0L / LDBL_EPSILON)
	{
	  __real__ res = __copysignl (M_PI_2l, __real__ x);
	  if (fabsl (__real__ x) <= 1.0L)
	    __imag__ res = 1.0L / __imag__ x;
	  else if (fabsl (__imag__ x) <= 1.0L)
	    __imag__ res = __imag__ x / __real__ x / __real__ x;
	  else
	    {
	      long double h = __ieee754_hypotl (__real__ x / 2.0L,
						__imag__ x / 2.0L);
	      __imag__ res = __imag__ x / h / h / 4.0L;
	    }
	}
      else
	{
	  long double r2, num, den, f;

	  r2 = __real__ x * __real__ x;

	  den = 1 - r2 - __imag__ x * __imag__ x;

	  __real__ res = 0.5L * __ieee754_atan2l (2.0L * __real__ x, den);

	  num = __imag__ x + 1.0L;
	  num = r2 + num * num;

	  den = __imag__ x - 1.0L;
	  den = r2 + den * den;

	  f = num / den;
	  if (f < 0.5L)
	    __imag__ res = 0.25L * __ieee754_logl (f);
	  else
	    {
	      num = 4.0L * __imag__ x;
	      __imag__ res = 0.25L * __log1pl (num / den);
	    }
	}

      if (fabsl (__real__ res) < LDBL_MIN)
	{
	  volatile long double force_underflow = __real__ res * __real__ res;
	  (void) force_underflow;
	}
      if (fabsl (__imag__ res) < LDBL_MIN)
	{
	  volatile long double force_underflow = __imag__ res * __imag__ res;
	  (void) force_underflow;
	}
    }

  return res;
}
weak_alias (__catanl, catanl)